Surface nanobubble characterization and its enhancement mechanisms for fine-particle flotation: A review
Fangyuan Ma , Patrick Zhang , Dongping Tao
International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (4) : 727 -738.
Surface nanobubble characterization and its enhancement mechanisms for fine-particle flotation: A review
Froth flotation is often used for fine-particle separation, but its process efficiency rapidly decreases with decreasing particle size. The efficient separation of ultrafine particles (UFPs) has been a major challenge in the mineral processing field for many years. In recent years, the use of surface nanobubbles in the flotation process has been recognized as an effective approach for enhancing the recovery of UFPs. Compared with traditional macrobubbles, nanobubbles possess unique surface and bulk characteristics, and their effects on the UFP flotation behavior have been a topic of intensive research. This review article is focused on the studies on various unique characteristics of nanobubbles and their mechanisms of enhancing the UFP flotation. The purpose of this article is to summarize the major achievements on the two topics and pinpoint future research needs for a better understanding of the fundamentals of surface nanobubble flotation and developing more feasible and efficient processes for fine and UFPs.
surface nanobubbles / characterization / flotation / ultrafine particles / high-efficiency separation
| [1] |
|
| [2] |
|
| [3] |
Z. Wang, N.Y. Liu, and D. Zou, Interface adsorption mechanism of the improved flotation of fine pyrite by hydrophobic flocculation, Sep. Purif. Technol., 275(2021), art. No. 119245. |
| [4] |
|
| [5] |
C. Yang, X.Y. Liu, W.H. Gao, Z.H. Zhang, H.Q. Wang, X.J. Lyu, J. Qiu, X.N. Zhu, and L. Li, Clean flotation of fine coal assisted by renewable collector prepared from waste oils, Energy Sources A, (2020). DOI: https://doi.org/10.1080/15567036.2020.1806406 |
| [6] |
X.N. Zhu, D.Z. Wang, Y. Ni, J.X. Wang, C.C. Nie, C. Yang, X.J. Lyu, J. Qiu, and L. Li, Cleaner approach to fine coal flotation by renewable collectors prepared by waste oil transesterification, J. Clean. Prod., 252(2020), art. No. 119822. |
| [7] |
|
| [8] |
C.W. Li, M. Xu, Y.W. Xing, H.J. Zhang, and U.A. Peuker, Efficient separation of fine coal assisted by surface nanobubbles, Sep. Purif. Technol., 249(2020), art. No. 117163. |
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
F.Y. Ma, D.P. Tao, and Y.J. Tao, Effects of nanobubbles in column flotation of Chinese sub-bituminous coal, Int. J. Coal Prep. Util, 2019. DOI: https://doi.org/10.1080/19392699.2019.1692340 |
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
C.W. Li, X. Li, M. Xu, and H.J. Zhang, Effect of ultrasonication on the flotation of fine graphite particles: Nanobubbles or not? Ultrason. Sonochem., 69(2020), art. No. 105243. |
| [25] |
F.F. Zhang, L.J. Sun, H.C. Yang, X.H. Gui, H. Schönherr, M. Kappl, Y.J. Cao, and Y.W. Xing, Recent advances for understanding the role of nanobubbles in particles flotation, Adv. Colloid Interface Sci., 291(2021), art. No. 102403. |
| [26] |
N. Chen, Z.W. Wen, X.F. Li, Z.X. Ye, D.F. Ren, J.Q. Xu, Q.M. Chen, and S.Y. Ma, Controllable preparation and formation mechanism of monodispersed bulk nanobubbles in dilute ethanol-water solutions, Colloids Surf. A, 616(2021), art. No. 126372. |
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
F.F. Zhang, Y.W. Xing, L.J. Sun, M. Liu, X.H. Gui, and Y.J. Cao, Characteristics of interfacial nanobubbles and their interaction with solid surfaces, Appl. Surf. Sci., 550(2021), art. No. 149258. |
| [32] |
|
| [33] |
L.M. Zhou, S. Wang, J. Qiu, L. Wang, X.Y. Wang, B. Li, L.J. Zhang, and J. Hu, Interfacial nanobubbles produced by longtime preserved cold water, Chin. Phys. B, 26(2017), No. 10, art. No. 106803. |
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
F.F. Zhang, Y.W. Xing, G.H. Chang, Z.L. Yang, Y.J. Cao, and X.H. Gui, Enhanced lignite flotation using interfacial nanobubbles based on temperature difference method, Fuel, 293(2021), art. No. 120313. |
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
J.R.T. Seddon, H.J.W. Zandvliet, and D. Lohse, Knudsen gas provides nanobubble stability, Phys. Rev. Lett., 107(2011), No. 11, art. No. 116101. |
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
L.J. Zhang, X.H. Zhang, Y. Zhang, J. Hu, and H.P. Fang, The length scales for stable gas nanobubbles at liquid/solid surfaces, Soft Matter, 6(2010), No. 18, art. No. 4515. |
| [59] |
H. Schönherr, N. Hain, W. Walczyk, D. Wesner, and S.I. Druzhinin, Surface nanobubbles studied by atomic force microscopy techniques: Facts, fiction, and open questions, Jpn. J. Appl. Phys., 55(2016), No. 8S1, art. No. 08NA01. |
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
W.G. Zhou, C.N. Wu, H.Z. Lv, B.L. Zhao, K. Liu, and L.M. Ou, Nanobubbles heterogeneous nucleation induced by temperature rise and its influence on minerals flotation, Appl. Surf. Sci., 508(2020), art. No. 145282. |
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
|
| [80] |
|
| [81] |
|
| [82] |
|
| [83] |
V. Chipakwe, A. Sand, and S.C. Chelgani, Nanobubble assisted flotation separation of complex Pb-Cu-Zn sulfide ore—Assessment of process readiness, Sep. Sci. Technol., 2021. DOI: https://doi.org/10.1080/01496395.2021.1981942 |
| [84] |
|
| [85] |
|
| [86] |
|
| [87] |
P.E. Theodorakis and Z.Z. Che, Surface nanobubbles: Theory, simulation, and experiment. A review, Adv. Colloid Interface Sci., 272(2019), art. No. 101995. |
| [88] |
|
| [89] |
|
| [90] |
N.D. Petsev, M.S. Shell, and L.G. Leal, Dynamic equilibrium explanation for nanobubbles’ unusual temperature and saturation dependence, Phys. Rev. E, 88(2013), No. 1, art. No. 010402. |
| [91] |
|
| [92] |
Y.W. Liu, J.J. Wang, X.R. Zhang, and W.C. Wang, Contact line pinning and the relationship between nanobubbles and substrates, J. Chem. Phys., 140(2014), No. 5, art. No. 054705. |
| [93] |
|
| [94] |
|
| [95] |
|
| [96] |
|
| [97] |
|
/
| 〈 |
|
〉 |