Hydrogen as a carrier of renewable energies toward carbon neutrality: State-of-the-art and challenging issues

Xuan Liu , Gaoyang Liu , Jilai Xue , Xindong Wang , Qingfeng Li

International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (5) : 1073 -1089.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (5) : 1073 -1089. DOI: 10.1007/s12613-022-2449-9
Invited Review

Hydrogen as a carrier of renewable energies toward carbon neutrality: State-of-the-art and challenging issues

Author information +
History +
PDF

Abstract

Energy storage and conversion via a hydrogen chain is a recognized vision of future energy systems based on renewables and, therefore, a key to bridging the technological gap toward a net-zero CO2 emission society. This paper reviews the hydrogen technological chain in the framework of renewables, including water electrolysis, hydrogen storage, and fuel cell technologies. Water electrolysis is an energy conversion technology that can be scalable in megawatts and operational in a dynamic mode to match the intermittent generation of renewable power. Material concerns include a robust diaphragm for alkaline cells, catalysts and construction materials for proton exchange membrane (PEM) cells, and validation of the long-term durability for solid oxide cells. Hydrogen storage via compressed gas up to 70 MPa is optional for automobile applications. Fuel cells favor hydrogen fuel because of its superfast electrode kinetics. PEM fuel cells and solid oxide fuel cells are dominating technologies for automobile and stationary applications, respectively. Both technologies are at the threshold of their commercial markets with verified technical readiness and environmental merits; however, they still face restraints such as unavailable hydrogen fueling infrastructure, long-term durability, and costs to compete with the analog power technologies already on the market.

Keywords

carbon neutrality / hydrogen energy / water electrolysis / hydrogen storage / fuel cells

Cite this article

Download citation ▾
Xuan Liu, Gaoyang Liu, Jilai Xue, Xindong Wang, Qingfeng Li. Hydrogen as a carrier of renewable energies toward carbon neutrality: State-of-the-art and challenging issues. International Journal of Minerals, Metallurgy, and Materials, 2022, 29(5): 1073-1089 DOI:10.1007/s12613-022-2449-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Intergovermental Panel on Climate Change (IPCC), Sixth Assessment Report, IPCC, Geneva, 2021 [2021-12-03]. https://www.ipcc.ch/assessment-report/ar6/

[2]

Lockwood T. A compararitive review of next-generation carbon capture technologies for coal-fired power plant. Energy Procedia, 2017, 114, 2658.

[3]

Millet P, Grigoriev S. Gandía LM, Arzamendi G, Diéguez PM. Water electrolysis technologies. Renewable Hydrogen Technologies: Production, Purification, Storage, Applications and Safety, 2013, Amsterdam, Elsevier, 19.

[4]

Song JJ, Wei C, Huang ZF, Liu CT, Zeng L, Wang X, Xu ZJ. A review on fundamentals for designing oxygen evolution electrocatalysts. Chem. Soc. Rev., 2020, 49(7): 2196.

[5]

Carmo M, Fritz DL, Mergel J, Stolten D. A comprehensive review on PEM water electrolysis. Int. J. Hydrogen Energy, 2013, 38(12): 4901.

[6]

Vincent I, Bessarabov D. Low cost hydrogen production by anion exchange membrane electrolysis: A review. Renewable Sustainable Energy Rev., 2018, 81, 1690.

[7]

Feng Q, Yuan XZ, Liu GY, Wei B, Zhang Z, Li H, Wang HJ. A review of proton exchange membrane water electrolysis on degradation mechanisms and mitigation strategies. J. Power Sources, 2017, 366, 33.

[8]

L. Bertuccioli, A. Chan, D. Hart, F. Lehner, B. Madden, and E. Standen, Study on Development of Water Electrolysis in the EU, Fuel Cells and Hydrogen Joint Undertaking, 2014 [2021-05-10]. https://www.fch.europa.eu/sites/default/files/FCHJUElectrolysisStudy_FullReport%20(ID%20199214).pdf

[9]

C.C. Yang, S.F. Zai, Y.T. Zhou, L. Du, and Q. Jiang, Fe3C-co nanoparticles encapsulated in a hierarchical structure of N-doped carbon as a multifunctional electrocatalyst for ORR, OER, and HER, Adv. Funct. Mater., 29(2019), No. 27, art. No. 1901949.

[10]

Zou XX, Zhang Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev., 2015, 44(15): 5148.

[11]

Liu LH, Li N, Han JR, Yao KL, Liang HY. Multicomponent transition metal phosphide for oxygen evolution. Int. J. Miner. Metall. Mater., 2022, 29(3): 503.

[12]

Lehner M, Tichler R, Steinmüller H, Koppe M. Power-to-Gas: Technology and Business Models, 2014, New York, Springer

[13]

Decourt B, Lajoie B, Debarre R, Soupa O. Hydrogen-based Energy Conversion. More than Storage: System Flexibility, 2014, Paris, SBC Energy Institute

[14]

Wang MY, Wang Z, Gong XZ, Guo ZC. The intensification technologies to water electrolysis for hydrogen production — A review. Renewable Sustainable Energy Rev., 2014, 29, 573.

[15]

Kraglund MR, Aili D, Jankova K, Christensen E, Li QF, Jensen JO. Zero-gap alkaline water electrolysis using ion-solvating polymer electrolyte membranes at reduced KOH concentrations. J. Electrochem. Soc., 2016, 163(11): F3125.

[16]

Mustain WE, Kohl PA. Improving alkaline ionomers. Nat. Energy, 2020, 5(5): 359.

[17]

C.Q. Li and J.B. Baek, The promise of hydrogen production from alkaline anion exchange membrane electrolyzers, Nano Energy, 87(2021), art. No. 106162.

[18]

Babic U, Suermann M, Büchi FN, Gubler L, Schmidt TJ. Critical review—Identifying critical gaps for polymer electrolyte water electrolysis development. J. Electrochem. Soc., 2017, 164(4): F387.

[19]

Li LG, Wang PT, Shao Q, Huang XQ. Metallic nanostructures with low dimensionality for electrochemical water splitting. Chem. Soc. Rev., 2020, 49(10): 3072.

[20]

Suen NT, Hung SF, Quan Q, Zhang N, Xu YJ, Chen HM. Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives. Chem. Soc. Rev., 2017, 46(2): 337.

[21]

A. Hauch, S.D. Ebbesen, S.H. Jensen, and M. Mogensen, Highly efficient high temperature electrolysis, J. Mater. Chem., 18(2008), No. 20, art. No. 2331.

[22]

Laguna-Bercero MA. Recent advances in high temperature electrolysis using solid oxide fuel cells: A review. J. Power Sources, 2012, 203, 4.

[23]

Chen KF, Jiang SP. Review—Materials degradation of solid oxide electrolysis cells. J. Electrochem. Soc., 2016, 163(11): F3070.

[24]

Moçoteguy P, Brisse A. A review and comprehensive analysis of degradation mechanisms of solid oxide electrolysis cells. Int. J. Hydrogen Energy, 2013, 38(36): 15887.

[25]

Ursua A, Gandia LM, Sanchis P. Hydrogen production from water electrolysis: Current status and future trends. Proc. IEEE, 2012, 100(2): 410.

[26]

Stetson NT, McWhorter S, Ahn CC. Gupta RB, Basile A, Veziroğlu TN. Introduction to hydrogen storage. Compendium of Hydrogen Energy. Volume 2: Hydrogen Storage, Distribution and Infrastructure, 2016, Cambrige, Woodhead Publishing, 3.

[27]

Lemmon EW, McLinden MO, Friend DG. Linstrom PJ, Mallard WG. Thermo-physical properties of fluid systems. NIST Chemistry Webbook, NIST Standard Reference Database, 1998, Gaithersburg, MD, National Institute of Standards and Technology Vol. 69

[28]

N. Stetson and M. Wieliczko, Hydrogen technologies for energy storage: A perspective, MRS Energy Sustainability, 7(2020), No. 1, art. No. 41.

[29]

S. McWhorter and G. Ordaz, Onboard Type IV Compressed Hydrogen Storage Systems — Current Performance and Cost, DOE Fuel Cell Technologies Office, 2013 [2021-10-24]. https://www.hydrogen.energy.gov/pdfs/13010_onboard_storage_performance_cost.pdf

[30]

NPROXX, Stationary Hydrogen Storage Applications [2021-11-10]. https://www.nproxx.com/hydrogen-storage-transport/stationary-applications/

[31]

Hexagon, Hydrogen Storage and Distribution — Lightweight High-Pressure Systems for Hydrogen Storage & Distribution [2021-06-05]. https://hexagongroup.com/solutions/storage-distribution/hydrogen/

[32]

Composite Advanced Technologies, LLC, Highway to Hydrogen [2021-12-01]. https://www.catecgases.com/hydrogen

[33]

NPROXX, Hydrogen Storage for Filling Stations [2021-11-13]. https://www.nproxx.com/hydrogen-storage-transport/hydrogen-refuelling-stations/

[34]

K.L. Simmons, Synergistically Enhanced Materials and Design Parameters for Reducing the Cost of Hydrogen Storage Tanks, DOE Hydrogen and Fuel Cells Program, 2014 [2021-10-20]. https://www.hydrogen.energy.gov/pdfs/progress14/iv_f_3_simmons_2014.pdf

[35]

Lord AS, Kobos PH, Borns DJ. Geologic storage of hydrogen: Scaling up to meet city transportation demands. Int. J. Hydrogen Energy, 2014, 39(28): 15570.

[36]

Michalski J, Bünger U, Crotogino F, Donadei S, Schneider GS, Pregger T, Cao KK, Heide D. Hydrogen generation by electrolysis and storage in salt caverns: Potentials, economics and systems aspects with regard to the German energy transition. Int. J. Hydrogen Energy, 2017, 42(19): 13427.

[37]

R. K. Ahluwalia, J.K. Peng, H.S. Roh, and D. Papadias, System Analysis of Physical and Materials-Based Hydrogen Storage, DOE Hydrogen and Fuel Cells Program, 2019 [2021-09-10]. https://www.hydrogen.energy.gov/pdfs/progress19/h2f_st001_ahluwalia_2019.pdf

[38]

Ratnakar RR, Gupta N, Zhang K, van Doorne C, Fesmire J, Dindoruk B, Balakotaiah V. Hydrogen supply chain and challenges in large-scale LH2 storage and transportation. Int. J. Hydrogen Energy, 2021, 46(47): 24149.

[39]

Tietze V, Luhr S, Stolten D. Stolten D, Emonts B. Bulk storage vessels for compressed and liquid hydrogen. Hydrogen Science and Engineering: Materials, Processes, Systems and Technology, 2016, Weinheim, Wiley-VCH, 659.

[40]

Andersson J, Grönkvist S. Large-scale storage of hydrogen. Int. J. Hydrogen Energy, 2019, 44(23): 11901.

[41]

Valenti G. Hydrogen liquefaction and liquid hydrogen storage. Compendium of Hydrogen Energy. Volume 2: Hydrogen Storage, Distribution and Infrastructure, 2016, Cambridge, Woodhead Publishing, 27.

[42]

Züttel A. Hydrogen storage methods. Naturwissenschaften, 2004, 91(4): 157.

[43]

von Colbe JB, Ares JR, Barale J, Baricco M, Buckley C, Capurso G, Gallandat N, Grant DM, Guzik MN, Jacob I, Jensen EH, Jensen T, Jepsen J, Klassen T, Lototskyy MV, Manickam K, Montone A, Puszkiel J, Sartori S, Sheppard DA, Stuart A, Walker G, Webb CJ, Yang H, Yartys V, Züttel A, Dornheim M. Application of hydrides in hydrogen storage and compression: Achievements, outlook and perspectives. Int. J. Hydrogen Energy, 2019, 44(15): 7780.

[44]

Milanese C, Jensen TR, Hauback BC, Pistidda C, Dornheim M, Yang H, Lombardo L, Zuettel A, Filinchuk Y, Ngene P, de Jongh PE, Buckley CE, Dematteis EM, Baricco M. Complex hydrides for energy storage. Int. J. Hydrogen Energy, 2019, 44(15): 7860.

[45]

M. Hirscher, V.A. Yartys, M. Baricco, J.B. von Colbe, D. Blanchard, R.C. Bowman, D.P. Broom, C.E. Buckley, F. Chang, P. Chen, Y.W. Cho, J.C. Crivello, F. Cuevas, W.I.F. David, P.E. de Jongh, R.V. Denys, M. Dornheim, M. Felderhoff, Y. Filinchuk, G.E. Froudakis, D.M. Grant, E.M. Gray, B.C. Hauback, T. He, T.D. Humphries, T.R. Jensen, S. Kim, Y. Kojima, M. Latroche, H.W. Li, M.V. Lototskyy, J.W. Makepeace, K.T. Møller, L. Naheed, P. Ngene, D. Noréus, M.M. Nygård, S.I. Orimo, M. Paskevicius, L. Pasquini, D.B. Ravnsbæk, M.V. Sofianos, T.J. Udovic, T. Vegge, G.S. Walker, C.J. Webb, C. Weidenthaler, and C. Zlotea, Materials for hydrogen-based energy storage — Past, recent progress and future outlook, J. Alloys Compd., 827(2020), art. No. 153548.

[46]

Li Q, Lin X, Luo Q, Chen YA, Wang JF, Jiang B, Pan FS. Kinetics of the hydrogen absorption and desorption processes of hydrogen storage alloys: A review. Int. J. Miner. Metall. Mater., 2022, 29(1): 32.

[47]

T. He, P. Pachfule, H. Wu, Q. Xu, and P. Chen, Hydrogen carriers, Nat. Rev. Mater., 1(2016), No. 12, art. No. 16059.

[48]

Bourane A, Elanany M, Pham TV, Katikaneni SP. An overview of organic liquid phase hydrogen carriers. Int. J. Hydrogen Energy, 2016, 41(48): 23075.

[49]

S. Bradley and W. Wilczewski, Power-to-gas brings a new focus to the issue of energy storage from renewable sources, Today in Energy, 2015 [2021-11-21]. https://www.eia.gov/todayinenergy/detail.php?id=22212#

[50]

FIBA Technologies, Superjumbo Tube Trailers, FIBA Technologies, Inc, Littleton [2021-12-09]. https://www.fibatech.com/products/tube-trailers-and-skids/superjumbo-tube-trailers/

[51]

Schnell P. Stolten D, Emonts B. Refueling station layout. Hydrogen Science and Engineering: Materials, Processes, Systems and Technology, 2016, Weinheim, Wiley-VCH, 891.

[52]

Gerboni R. Gupta RB, Basile A, Veziroglu TN. Introduction to hydrogen transportation. Compendium of Hydrogen Energy. Volume 2: Hydrogen Storage, Distribution and Infrastructure, 2016, Cambrige, Woodhead Publishing, 283.

[53]

Samsun RC, Antoni L, Rex M, Stolten D. Deployment Status of Fuel Cells in Road Transport: 2021 Update, 2021, Jülich, Forschungszentrum Jülich GmbH, Zentralbibliothek, Verlag

[54]

D. Apostolou and G. Xydis, A literature review on hydrogen refuelling stations and infrastructure. Current status and future prospects, Renewable Sustainable Energy Rev., 113(2019), art. No. 109292.

[55]

Chubbock S, Clague R. Comparative analysis of internal combustion engine and fuel cell range extender. SAE Int. J. Alt. Power., 2016, 5(1): 175.

[56]

Elgowainy A, Wang MQ. Fuel Cycle Comparison of Distributed Power Generation Technologies, 2008, Oak Ridge, TN, Office of Scientific and Technical Information (OSTI) [2021-11-02]

[57]

Wang YJ, Qiao JL, Baker R, Zhang JJ. Alkaline polymer electrolyte membranes for fuel cell applications. Chem. Soc. Rev., 2013, 42(13): 5768.

[58]

Varcoe JR, Atanassov P, Dekel DR, Herring AM, Hickner MA, Kohl PA, Kucernak AR, Mustain WE, Nijmeijer K, Scott K, Xu TW, Zhuang L. Anion-exchange membranes in electrochemical energy systems. Energy Environ. Sci., 2014, 7(10): 3135.

[59]

Li QF, Aili D, Hjuler HA, Jensen JO. High Temperature Polymer Electrolyte Membrane Fuel Cells: Approaches, Status, and Perspectives, 2016, Cham, Springer

[60]

Fan LX, Tu ZK, Chan SH. Recent development of hydrogen and fuel cell technologies: A review. Energy Rep., 2021, 7, 8421.

[61]

Cassir M, Meléndez-Ceballos A, Ringuedé A, Lair V. Barbir F, Basile A, Veziroğlu TN. Molten carbonate fuel cells. Compendium of Hydrogen Energy. Volume 3: Hydrogen Energy Conversion, 2016, Cambridge, Woodhead Publishing, 71.

[62]

A.S. Mehr, A. Lanzini, M. Santarelli, and M.A. Rosen, Polygeneration systems based on high temperature fuel cell (MCFC and SOFC) technology: System design, fuel types, modeling and analysis approaches, Energy, 228(2021), art. No. 120613.

[63]

Singh M, Zappa D, Comini E. Solid oxide fuel cell: Decade of progress, future perspectives and challenges. Int. J. Hydrogen Energy, 2021, 46(54): 27643.

[64]

Prakash BS, Kumar SS, Aruna ST. Properties and development of Ni/YSZ as an anode material in solid oxide fuel cell: A review. Renewable Sustainable Energy Rev., 2014, 36, 149.

[65]

Zakaria Z, Mat Z A, Abu Hassan SH, Boon Kar Y. A review of solid oxide fuel cell component fabrication methods toward lowering temperature. Int. J. Energy Res., 2020, 44(2): 594.

[66]

Mahato N, Banerjee A, Gupta A, Omar S, Balani K. Progress in material selection for solid oxide fuel cell technology: A review. Prog. Mater. Sci., 2015, 72, 141.

[67]

Mallick RK, Thombre SB, Shrivastava NK. Vapor feed direct methanol fuel cells (DMFCs): A review. Renewable Sustainable Energy Rev., 2016, 56, 51.

[68]

Pollet BG, Franco AA, Su H, Liang H, Pasupathi S. Barbir F, Basile A, Veziroğlu TN. Proton exchange membrane fuel cells. Compendium of Hydrogen Energy. Volume 3: Hydrogen Energy Conversion, 2016, Cambridge, Woodhead Publishing, 3.

[69]

L.Y. Zhu, Y.C. Li, J. Liu, J. He, L.Y. Wang, and J.D. Lei, Recent developments in high-performance Nafion membranes for hydrogen fuel cells applications, Pet. Sci., (2021). https://doi.org/10.1016/j.petsci.2021.11.004

[70]

Van Dao D, Adilbish G, Lee IH, Yu YT. Enhanced electrocatalytic property of Pt/C electrode with double catalyst layers for PEMFC. Int. J. Hydrogen Energy, 2019, 44(45): 24580.

[71]

Middelman E. Improved PEM fuel cell electrodes by controlled self-assembly. Fuel Cells Bull., 2002, 2002(11): 9.

[72]

Lin JF, Wertz J, Ahmad R, Thommes M, Kannan AM. Effect of carbon paper substrate of the gas diffusion layer on the performance of proton exchange membrane fuel cell. Electrochim. Acta, 2010, 55(8): 2746.

[73]

K. Panagi, C.J. Laycock, J.P. Reed, and A.J. Guwy, Highly efficient coproduction of electrical power and synthesis gas from biohythane using solid oxide fuel cell technology, Appl. Energy, 255(2019), art. No. 113854.

[74]

Choolaei M, Cai Q, Slade RCT, Amini Horri B. Nanocrystalline gadolinium-doped ceria (GDC) for SOFCs by an environmentally-friendly single step method. Ceram. Int., 2018, 44(11): 13286.

[75]

Ahmad MZ, Ahmad SH, Chen RS, Ismail AF, Hazan R, Baharuddin NA. Review on recent advancement in cathode material for lower and intermediate temperature solid oxide fuel cells application. Int. J. Hydrogen Energy, 2022, 47(2): 1103.

[76]

Xia C, Li Y, Tian Y, Liu QH, Wang ZM, Jia LJ, Zhao YC, Li YD. Intermediate temperature fuel cell with a doped ceria—carbonate composite electrolyte. J. Power Sources, 2010, 195(10): 3149.

[77]

A. Ahuja, M. Gautam, A. Sinha, J. Sharma, P.K. Patro, and A. Venkatasubramanian, Effect of processing route on the properties of LSCF-based composite cathode for IT-SOFC, Bull. Mater. Sci., 43(2020), No. 1, art. No. 129.

[78]

Wachsman ED, Lee KT. Lowering the temperature of solid oxide fuel cells. Science, 2011, 334(6058): 935.

AI Summary AI Mindmap
PDF

102

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/