Smart manufacturing of nonferrous metallurgical processes: Review and perspectives
Bei Sun , Juntao Dai , Keke Huang , Chunhua Yang , Weihua Gui
International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (4) : 611 -625.
Smart manufacturing of nonferrous metallurgical processes: Review and perspectives
The nonferrous metallurgical (NFM) industry is a cornerstone industry for a nation’s economy. With the development of artificial technologies and high requirements on environment protection, product quality, and production efficiency, the importance of applying smart manufacturing technologies to comprehensively percept production states and intelligently optimize process operations is becoming widely recognized by the industry. As a brief summary of the smart and optimal manufacturing of the NFM industry, this paper first reviews the research progress on some key facets of the operational optimization of NFM processes, including production and management, blending optimization, modeling, process monitoring, optimization, and control. Then, it illustrates the perspectives of smart and optimal manufacturing of the NFM industry. Finally, it discusses the major research directions and challenges of smart and optimal manufacturing for the NFM industry. This paper will lay a foundation for the realization of smart and optimal manufacturing in nonferrous metallurgy in the future.
nonferrous metallurgical industry / smart and optimal manufacturing / online perception / intelligent control / operational optimization / automation of knowledge-based work
| [1] |
|
| [2] |
|
| [3] |
M. Siemon, M. Schiffer, and G. Walther, Integrated purchasing and production planning for a non-ferrous metal production network, Omega, 98(2021), art. No. 102136. |
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
Y.S. Liu, C.H. Yang, K.K. Huang, and W.H. Gui, Non-ferrous metals price forecasting based on variational mode decomposition and LSTM network, Knowledge Based Syst., 188(2020), art. No. 105006. |
| [10] |
|
| [11] |
|
| [12] |
Y. Chen, Y.G. Li, B. Sun, Y.D. Li, H.Q. Zhu, and Z.S. Chen, A chance-constrained programming approach for a zinc hydrometallurgy blending problem under uncertainty, Comput. Chem. Eng., 140(2020), art. No. 106893. |
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
J. Yianatos, P. Vallejos, R. Grau, and A. Yañez, New approach for flotation process modelling and simulation, Miner. Eng., 156(2020), art. No. 106482. |
| [28] |
P. Quintanilla, S.J. Neethling, and P.R. Brito-Parada, Modelling for froth flotation control: A review, Miner. Eng., 162(2021), art. No. 106718. |
| [29] |
D.J. Oosthuizen, J.D. le Roux, and I.K. Craig, A dynamic flotation model to infer process characteristics from online measurements, Miner. Eng., 167(2021), art. No. 106878. |
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
J.D. le Roux, A. Steinboeck, A. Kugi, and I.K. Craig, Steadystate and dynamic simulation of a grinding mill using grind curves, Miner. Eng., 152(2020), art. No. 106208. |
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
R.K. Inapakurthi, S.S. Miriyala, and K. Mitra, Recurrent neural networks based modelling of industrial grinding operation, Chem. Eng. Sci., 219(2020), art. No. 115585. |
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
E.J.Y. Koh, E. Amini, G.J. McLachlan, and N. Beaton, Utilising a deep neural network as a surrogate model to approximate phenomenological models of a comminution circuit for faster simulations, Miner. Eng., 170(2021), art. No. 107026. |
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
|
| [80] |
|
| [81] |
H. Zhang, Z.H. Tang, Y.F. Xie, J. Luo, Q. Chen, and W.H. Gui, Grade prediction of zinc tailings using an encoder-decoder model in froth flotation, Miner. Eng., 172(2021), art. No. 107173. |
| [82] |
H. Zhang, Z.H. Tang, Y.F. Xie, X.L. Gao, Q. Chen, and W.H. Gui, Long short-term memory-based grade monitoring in froth flotation using a froth video sequence, Miner. Eng., 160(2021), art. No. 106677. |
| [83] |
|
| [84] |
S. Yang, P. Navarathna, S. Ghosh, and B.W. Bequette, Hybrid modeling in the era of smart manufacturing, Comput. Chem. Eng., 140(2020), art. No. 106874. |
| [85] |
|
| [86] |
|
| [87] |
|
| [88] |
|
| [89] |
|
| [90] |
B. Sun, W. Yang, M.F. He, and X.L. Wang, An integrated multi-mode model of froth flotation cell based on fusion of flotation kinetics and froth image features, Miner. Eng., 172(2021), art. No. 107169. |
| [91] |
|
| [92] |
X. Yang, J.J. Gao, L.L. Li, H. Luo, S.X. Ding, and K.X. Peng, Data-driven design of fault-tolerant control systems based on recursive stable image representation, Automatica, 122(2020), art. No. 109246. |
| [93] |
|
| [94] |
|
| [95] |
|
| [96] |
Z.H. Zeng, W.H. Gui, X.F. Chen, Y.F. Xie, and R.C. Wu, A mechanism knowledge-driven method for identifying the pseudo dissolution hysteresis coefficient in the industrial aluminium electrolysis process, Control Eng. Pract., 102(2020), art. No. 104533. |
| [97] |
|
| [98] |
|
| [99] |
|
| [100] |
|
| [101] |
|
| [102] |
|
| [103] |
|
| [104] |
|
| [105] |
|
| [106] |
|
| [107] |
|
| [108] |
|
| [109] |
X.L. Gao, Z.H. Tang, Y.F. Xie, H. Zhang, and W.H. Gui, A layered working condition perception integrating handcrafted with deep features for froth flotation, Miner. Eng., 170(2021), art. No. 107059. |
| [110] |
|
| [111] |
|
| [112] |
|
| [113] |
|
| [114] |
|
| [115] |
|
| [116] |
|
| [117] |
|
| [118] |
A.J. Yan, F.H. Wu, and T.Y. Chai, Fault diagnosis expert system using neural networks for roasting process, [in] 16th Triennial World Congress, Prague, 2005, p. 115. |
| [119] |
|
| [120] |
|
| [121] |
|
| [122] |
|
| [123] |
|
| [124] |
|
| [125] |
|
| [126] |
|
| [127] |
|
| [128] |
G. Asbjörnsson, L.M. Tavares, A. Mainza, and M. Yahyaei, Different perspectives of dynamics in comminution processes, Miner. Eng., 176(2022), art. No. 107326. |
| [129] |
|
| [130] |
|
| [131] |
|
| [132] |
|
| [133] |
|
| [134] |
|
| [135] |
|
| [136] |
|
| [137] |
E.N. Pistikopoulos, A. Barbosa-Povoa, J.H. Lee, R. Misener, A. Mitsos, G.V. Reklaitis, V. Venkatasubramanian, F.Q. You, and R. Gani, Process systems engineering—The generation next? Comput. Chem. Eng., 147(2021), art. No. 107252. |
| [138] |
|
| [139] |
E. Nolasco, V.S. Vassiliadis, W. Kähm, S.D. Adloor, R.A. Ismaili, R. Conejeros, T. Espaas, N. Gangadharan, V. Mappas, F. Scott, and Q.Y. Zhang, Optimal control in chemical engineering: Past, present and future, Comput. Chem. Eng., 155(2021), art. No. 107528. |
| [140] |
|
| [141] |
|
| [142] |
|
| [143] |
|
| [144] |
|
| [145] |
|
| [146] |
|
| [147] |
|
| [148] |
|
| [149] |
|
| [150] |
|
| [151] |
|
| [152] |
|
| [153] |
|
| [154] |
|
| [155] |
H. Li, F.L. Wang, H.R. Li, and Q.K. Wang, Safety control modeling method based on Bayesian network transfer learning for the thickening process of gold hydrometallurgy, Knowl. Based Syst., 192(2020), art. No. 105297. |
| [156] |
|
| [157] |
|
| [158] |
|
| [159] |
|
| [160] |
|
| [161] |
|
| [162] |
|
| [163] |
|
| [164] |
|
| [165] |
|
| [166] |
W.H. Gui, C.H. Yang, D.G. Xu, M. Lu, and Y.F. Xie, Machine-vision-based online measuring and controlling technologies for mineral flotation—A review, Acta Autom. Sin., 39(2013), No. 11, art. No. 1879. |
| [167] |
|
| [168] |
|
| [169] |
|
| [170] |
|
| [171] |
J. Zhang, Z.H. Tang, Y.F. Xie, Q. Chen, M.X. Ai, and W.H. Gui, Timed key-value memory network for flotation reagent control, Control Eng. Pract., 98(2020), art. No. 104360. |
| [172] |
|
| [173] |
|
| [174] |
|
| [175] |
|
| [176] |
|
| [177] |
|
| [178] |
|
| [179] |
|
| [180] |
|
| [181] |
|
| [182] |
|
| [183] |
|
| [184] |
|
| [185] |
|
| [186] |
|
/
| 〈 |
|
〉 |