Smart manufacturing of nonferrous metallurgical processes: Review and perspectives

Bei Sun , Juntao Dai , Keke Huang , Chunhua Yang , Weihua Gui

International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (4) : 611 -625.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (4) : 611 -625. DOI: 10.1007/s12613-022-2448-x
Invited Review

Smart manufacturing of nonferrous metallurgical processes: Review and perspectives

Author information +
History +
PDF

Abstract

The nonferrous metallurgical (NFM) industry is a cornerstone industry for a nation’s economy. With the development of artificial technologies and high requirements on environment protection, product quality, and production efficiency, the importance of applying smart manufacturing technologies to comprehensively percept production states and intelligently optimize process operations is becoming widely recognized by the industry. As a brief summary of the smart and optimal manufacturing of the NFM industry, this paper first reviews the research progress on some key facets of the operational optimization of NFM processes, including production and management, blending optimization, modeling, process monitoring, optimization, and control. Then, it illustrates the perspectives of smart and optimal manufacturing of the NFM industry. Finally, it discusses the major research directions and challenges of smart and optimal manufacturing for the NFM industry. This paper will lay a foundation for the realization of smart and optimal manufacturing in nonferrous metallurgy in the future.

Keywords

nonferrous metallurgical industry / smart and optimal manufacturing / online perception / intelligent control / operational optimization / automation of knowledge-based work

Cite this article

Download citation ▾
Bei Sun, Juntao Dai, Keke Huang, Chunhua Yang, Weihua Gui. Smart manufacturing of nonferrous metallurgical processes: Review and perspectives. International Journal of Minerals, Metallurgy, and Materials, 2022, 29(4): 611-625 DOI:10.1007/s12613-022-2448-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gui WH, Chen XF, Yang CH, Xie YF. Knowledge automation and its industrial application. Sci. Sin.-Inf., 2016, 46(8): 1016.

[2]

ZM, Jiang TR, Li ZW. Multiproduct and multistage integrated production planning model and algorithm based on an available production capacity network. Int. J. Miner. Metall. Mater., 2021, 28(8): 1343.

[3]

M. Siemon, M. Schiffer, and G. Walther, Integrated purchasing and production planning for a non-ferrous metal production network, Omega, 98(2021), art. No. 102136.

[4]

Sakalli US, Birgoren B. A spreadsheet-based decision support tool for blending problems in brass casting industry. Comput. Ind. Eng., 2009, 56(2): 724.

[5]

Caldentey R, Mondschein S. Policy model for pollution control in the copper industry, including a model for the sulfuric acid market. Oper. Res., 2003, 51(1): 1.

[6]

Hahn GJ, Kuhn H. Value-based performance and risk management in supply chains: A robust optimization approach. Int. J. Prod. Econ., 2012, 139(1): 135.

[7]

Guillén G, Badell M, Puigjaner L. A holistic framework for short-term supply chain management integrating production and corporate financial planning. Int. J. Prod. Econ., 2007, 106(1): 288.

[8]

Sousa R, Shah N, Papageorgiou LG. Supply chain design and multilevel planning—An industrial case. Comput. Chem. Eng., 2008, 32(11): 2643.

[9]

Y.S. Liu, C.H. Yang, K.K. Huang, and W.H. Gui, Non-ferrous metals price forecasting based on variational mode decomposition and LSTM network, Knowledge Based Syst., 188(2020), art. No. 105006.

[10]

Wu OQ, Chen H. Optimal control and equilibrium behavior of production-inventory systems. Manag. Sci., 2010, 56(8): 1362.

[11]

Sakallı S, Baykoç F, Birgören B. Stochastic optimization for blending problem in brass casting industry. Ann. Oper. Res., 2011, 186(1): 141.

[12]

Y. Chen, Y.G. Li, B. Sun, Y.D. Li, H.Q. Zhu, and Z.S. Chen, A chance-constrained programming approach for a zinc hydrometallurgy blending problem under uncertainty, Comput. Chem. Eng., 140(2020), art. No. 106893.

[13]

Yang CH, Gui WH, Kong LS, Wang YL. Modeling and optimal-setting control of blending process in a metallurgical industry. Comput. Chem. Eng., 2009, 33(7): 1289.

[14]

Sun B, Yang CH, Zhu HQ, Li YG, Gui WH. Modeling, optimization, and control of solution purification process in zinc hydrometallurgy. IEEE/CAA J. Autom. Sin., 2018, 5(2): 564.

[15]

Sun B, Yang CH, Wang YL, Gui WH, Craig I, Olivier L. A comprehensive hybrid first principles/machine learning modeling framework for complex industrial processes. J. Process. Control, 2020, 86, 30.

[16]

Riquelme OB. Modelling and Computer Control of a Flotation Cell, 1982, Salt Lake City, University of Utah [Dissertation]

[17]

Niemi AJ. Role of kinetics in modelling and control of flotation plants. Powder Technol., 1995, 82(1): 69.

[18]

Casali A, Gonzalez G, Agusto H, Vallebuona G. Dynamic simulator of a rougher flotation circuit for a copper sulphide ore. Miner. Eng., 2002, 15(4): 253.

[19]

Neethling SJ, Lee HT, Cilliers JJ. Simple relationships for predicting the recovery of liquid from flowing foams and froths. Miner. Eng., 2003, 16(11): 1123.

[20]

Savassi ON. A compartment model for the mass transfer inside a conventional flotation cell. Int. J. Miner. Process., 2005, 77(2): 65.

[21]

Stadler SAC, Eksteen JJ, Aldrich C. Physical modelling of slag foaming in two-phase and three-phase systems in the churn-flow regime. Miner. Eng., 2006, 19(3): 237.

[22]

Hadler K, Greyling M, Plint N, Cilliers JJ. The effect of froth depth on air recovery and flotation performance. Miner. Eng., 2012, 36–38, 248.

[23]

Jovanović I, Miljanović I. Modelling of flotation processes by classical mathematical methods-A review. Arch. Min. Sci., 2015, 60(4): 905

[24]

Norori-McCormac A, Brito-Parada PR, Hadler K, Cole K, Cilliers JJ. The effect of particle size distribution on froth stability in flotation. Sep. Purif. Technol., 2017, 184, 240.

[25]

Shean B, Hadler K, Neethling S, Cilliers JJ. A dynamic model for level prediction in aerated tanks. Miner. Eng., 2018, 125, 140.

[26]

Neethling SJ, Brito-Parada PR. Predicting flotation behaviour—The interaction between froth stability and performance. Miner. Eng., 2018, 120, 60.

[27]

J. Yianatos, P. Vallejos, R. Grau, and A. Yañez, New approach for flotation process modelling and simulation, Miner. Eng., 156(2020), art. No. 106482.

[28]

P. Quintanilla, S.J. Neethling, and P.R. Brito-Parada, Modelling for froth flotation control: A review, Miner. Eng., 162(2021), art. No. 106718.

[29]

D.J. Oosthuizen, J.D. le Roux, and I.K. Craig, A dynamic flotation model to infer process characteristics from online measurements, Miner. Eng., 167(2021), art. No. 106878.

[30]

Herbst JA, Fuerstenau DW. Scale-up procedure for continuous grinding mill design using population balance models. Int. J. Miner. Process., 1980, 7(1): 1.

[31]

Rajamani RK, Herbst JA. Optimal control of a ball mill grinding circuit—II. Feedback and optimal control. Chem. Eng. Sci., 1991, 46(3): 871.

[32]

Casali A, Gonzalez G, Torres F, Vallebuona G, Castelli L, Gimenez P. Particle size distribution soft-sensor for a grinding circuit. Powder Technol., 1998, 99(1): 15.

[33]

Liu Y, Spencer S. Dynamic simulation of grinding circuits. Miner. Eng., 2004, 17(11–12): 1189.

[34]

Zhou P, Chai TY, Wang H. Intelligent optimal-setting control for grinding circuits of mineral processing process. IEEE Trans. Autom. Sci. Eng., 2009, 6(4): 730.

[35]

Yang J, Li SH, Chen XS, Li Q. Disturbance rejection of ball mill grinding circuits using DOB and MPC. Powder Technol., 2010, 198(2): 219.

[36]

Tang J, Zhao LJ, Zhou JW, Yue H, Chai TY. Experimental analysis of wet mill load based on vibration signals of laboratory-scale ball mill shell. Miner. Eng., 2010, 23(9): 720.

[37]

Wang XL, Gui WH, Yang CH, Wang YL. Wet grindability of an industrial ore and its breakage parameters estimation using population balances. Int. J. Miner. Process., 2011, 98(1–2): 113.

[38]

Cleary PW, Morrison RD. Understanding fine ore breakage in a laboratory scale ball mill using DEM. Miner. Eng., 2011, 24(3–4): 352.

[39]

Ebadnejad A, Karimi GR, Dehghani H. Application of response surface methodology for modeling of ball mills in copper sulphide ore grinding. Powder Technol., 2013, 245, 292.

[40]

le Roux JD, Craig IK, Hulbert DG, Hinde AL. Analysis and validation of a run-of-mine ore grinding mill circuit model for process control. Miner. Eng., 2013, 43–44, 121.

[41]

Lu SW, Zhou P, Chai TY, Dai W. Modeling and simulation of whole ball mill grinding plant for integrated control. IEEE Trans. Autom. Sci. Eng., 2014, 11(4): 1004.

[42]

Wang XL, Wang YL, Yang CH, Xu DG, Gui WH. Hybrid modeling of an industrial grinding-classification process. Powder Technol., 2015, 279, 75.

[43]

Danha G, Hildebrandt D, Glasser D, Bhondayi C. Application of basic process modeling in investigating the breakage behavior of UG2 ore in wet milling. Powder Technol., 2015, 279, 42.

[44]

Kwon J, Jeong J, Cho H. Simulation and optimization of a two-stage ball mill grinding circuit of molybdenum ore. Adv. Powder Technol., 2016, 27(4): 1073.

[45]

Lu SW. Acceleration of kinetic Monte Carlo simulation of particle breakage process during grinding with controlled accuracy. Powder Technol., 2016, 301, 186.

[46]

J.D. le Roux, A. Steinboeck, A. Kugi, and I.K. Craig, Steadystate and dynamic simulation of a grinding mill using grind curves, Miner. Eng., 152(2020), art. No. 106208.

[47]

Lu SW, Chai TY. Mesoscale particle size predictive model for operational optimal control of bauxite ore grinding process. IEEE Trans. Ind. Inf., 2020, 16(12): 7714.

[48]

Komulainen T, Pekkala P, Rantala A, Jämsä-Jounela SL. Dynamic modelling of an industrial copper solvent extraction process. Hydrometallurgy, 2006, 81(1): 52.

[49]

Verbaan B, Crundwell FK. An electrochemical model for the leaching of a sphalerite concentrate. Hydrometallurgy, 1986, 16(3): 345.

[50]

Crundwell FK. Progress in the mathematical modelling of leaching reactors. Hydrometallurgy, 1995, 39(1–3): 321.

[51]

Crundwell FK, Godorr SA. A mathematical model of the leaching of gold in cyanide solutions. Hydrometallurgy, 1997, 44(1–2): 147.

[52]

Crundwell FK, Preez N, Lloyd JM. Dynamics of particle-size distributions in continuous leaching reactors and autoclaves. Hydrometallurgy, 2013, 133, 44.

[53]

Crundwell FK. The dissolution and leaching of minerals: Mechanisms, myths and misunderstandings. Hydrometallurgy, 2013, 139, 132.

[54]

Lampinen M, Laari A, Turunen I. Kinetic model for direct leaching of zinc sulfide concentrates at high slurry and solute concentration. Hydrometallurgy, 2015, 153, 160.

[55]

Coelho FEB, Balarini JC, Araújo EMR, Miranda TLS, Peres AEC, Martins AH, Salum A. Roasted zinc concentrate leaching: Population balance modeling and validation. Hydrometallurgy, 2018, 175, 208.

[56]

Zhang B, Yang CH, Zhu HQ, Li YG, Gui WH. Kinetic modeling and parameter estimation for competing reactions in copper removal process from zinc sulfate solution. Ind. Eng. Chem. Res., 2013, 52(48): 17074.

[57]

Sun B, Gui WH, Wu TB, Wang YL, Yang CH. An integrated prediction model of cobalt ion concentration based on oxidation-reduction potential. Hydrometallurgy, 2013, 140, 102.

[58]

Mokmeli M, Dreisinger D, Wassink B. Modeling of selenium and tellurium removal from copper electrowinning solution. Hydrometallurgy, 2015, 153, 12.

[59]

Mahon M, Wasik L, Alfantazi A. Development and implementation of a zinc electrowinning process simulation. J. Electrochem. Soc., 2012, 159(8): D486.

[60]

Deng SJ, Yang CH, Li YG, Zhu HQ, Wu TB. Spatiotemporal distribution model for zinc electrowinning process and its parameter estimation. J. Cent. South Univ., 2017, 24(9): 1968.

[61]

Qiao JH, Chai TY. Soft measurement model and its application in raw meal calcination process. J. Process Control, 2012, 22(1): 344.

[62]

McCoy JT, Auret L. Machine learning applications in minerals processing: A review. Miner. Eng., 2019, 132, 95.

[63]

Mitra K, Ghivari M. Modeling of an industrial wet grinding operation using data-driven techniques. Comput. Chem. Eng., 2006, 30(3): 508.

[64]

Tang J, Chai TY, Yu W, Zhao LJ. Feature extraction and selection based on vibration spectrum with application to estimating the load parameters of ball mill in grinding process. Control Eng. Pract., 2012, 20(10): 991.

[65]

Tang J, Chai TY, Yu W, Zhao LJ. Modeling load parameters of ball mill in grinding process based on selective ensemble multisensor information. IEEE Trans. Autom. Sci. Eng., 2013, 10(3): 726.

[66]

Ding JL, Chai TY, Cheng WJ, Zheng XP. Data-based multiple-model prediction of the production rate for hematite ore beneficiation process. Control Eng. Pract., 2015, 45, 219.

[67]

Lv Z, Liu Y, Zhao J, Wang W. Soft computing for overflow particle size in grinding process based on hybrid case based reasoning. Appl. Soft Comput., 2015, 27, 533.

[68]

R.K. Inapakurthi, S.S. Miriyala, and K. Mitra, Recurrent neural networks based modelling of industrial grinding operation, Chem. Eng. Sci., 219(2020), art. No. 115585.

[69]

Avalos S, Kracht W, Ortiz JM. Machine learning and deep learning methods in mining operations: A data-driven SAG mill energy consumption prediction application. Min. Metall. Explor., 2020, 37, 1197

[70]

Miriyala SS, Mitra K. Deep learning based system identification of industrial integrated grinding circuits. Powder Technol., 2020, 360, 921.

[71]

Zhang J, Tang ZH, Xie YF, Ai MX, Zhang GY, Gui WH. Data-driven adaptive modeling method for industrial processes and its application in flotation reagent control. ISA Trans., 2021, 108, 305.

[72]

E.J.Y. Koh, E. Amini, G.J. McLachlan, and N. Beaton, Utilising a deep neural network as a surrogate model to approximate phenomenological models of a comminution circuit for faster simulations, Miner. Eng., 170(2021), art. No. 107026.

[73]

Zhou JY, Wang XL, Yang CH, Xiong W. A novel soft sensor modeling approach based on difference-LSTM for complex industrial process. IEEE Trans. Ind. Inf., 2022, 18(5): 2955.

[74]

Jovanović I, Miljanović I, Jovanović T. Soft computing-based modeling of flotation processes—A review. Miner. Eng., 2015, 84, 34.

[75]

Marais C, Aldrich C. Estimation of platinum flotation grades from froth image data. Miner. Eng., 2011, 24(5): 433.

[76]

Auret L, Aldrich C. Interpretation of nonlinear relationships between process variables by use of random forests. Miner. Eng., 2012, 35, 27.

[77]

Xu DG, Chen YW, Chen X, Xie YF, Yang CH, Gui WH. Multi-model soft measurement method of the froth layer thickness based on visual features. Chemom. Intell. Lab. Syst., 2016, 154, 112.

[78]

Fu YH, Aldrich C. Froth image analysis by use of transfer learning and convolutional neural networks. Miner. Eng., 2018, 115, 68.

[79]

Zhao L, Peng T, Xie YF, Gui WH, Zhao YH. Froth stereo visual feature extraction for the industrial flotation process. Ind. Eng. Chem. Res., 2019, 58(31): 14510.

[80]

Fu YF, Yang B, Ma YQ, Sun QY, Yao J, Fu WB, Yin WZ. Effect of particle size on magnesite flotation based on kinetic studies and machine learning simulation. Powder Technol., 2020, 376, 486.

[81]

H. Zhang, Z.H. Tang, Y.F. Xie, J. Luo, Q. Chen, and W.H. Gui, Grade prediction of zinc tailings using an encoder-decoder model in froth flotation, Miner. Eng., 172(2021), art. No. 107173.

[82]

H. Zhang, Z.H. Tang, Y.F. Xie, X.L. Gao, Q. Chen, and W.H. Gui, Long short-term memory-based grade monitoring in froth flotation using a froth video sequence, Miner. Eng., 160(2021), art. No. 106677.

[83]

Yang X, Zhang Y, Shardt YAW, Li XL, Cui JR, Tong CN. A KPI-based soft sensor development approach incorporating infrequent, variable time delayed measurements. IEEE Trans. Control Syst. Technol., 2020, 28(6): 2523.

[84]

S. Yang, P. Navarathna, S. Ghosh, and B.W. Bequette, Hybrid modeling in the era of smart manufacturing, Comput. Chem. Eng., 140(2020), art. No. 106874.

[85]

Jia RD, Mao ZZ, Chang YQ, Zhao LP. Soft-sensor for copper extraction process in cobalt hydrometallurgy based on adaptive hybrid model. Chem. Eng. Res. Des., 2011, 89(6): 722.

[86]

Zhang SN, Wang FL, He DK, Chu F. Soft sensor for cobalt oxalate synthesis process in cobalt hydrometallurgy based on hybrid model. Neural Comput. Appl., 2013, 23(5): 1465.

[87]

Xie YF, Xie SW, Chen XF, Gui WH, Yang CH, Caccetta L. An integrated predictive model with an on-line updating strategy for iron precipitation in zinc hydrometallurgy. Hydrometallurgy, 2015, 151, 62.

[88]

Yang J, Chai TY, Luo CM, Yu W. Intelligent demand forecasting of smelting process using data-driven and mechanism model. IEEE Trans. Ind. Electron., 2019, 66(12): 9745.

[89]

Xu T, Song G, Yang Y, Ge PX, Tang LX. Visualization and simulation of steel metallurgy processes. Int. J. Miner. Metall. Mater., 2021, 28(8): 1387.

[90]

B. Sun, W. Yang, M.F. He, and X.L. Wang, An integrated multi-mode model of froth flotation cell based on fusion of flotation kinetics and froth image features, Miner. Eng., 172(2021), art. No. 107169.

[91]

Jämsä-Jounela SL, Poikonen R, Vatanski N, Rantala A. Evaluation of control performance: Methods, monitoring tool and applications in a flotation plant. Miner. Eng., 2003, 16(11): 1069.

[92]

X. Yang, J.J. Gao, L.L. Li, H. Luo, S.X. Ding, and K.X. Peng, Data-driven design of fault-tolerant control systems based on recursive stable image representation, Automatica, 122(2020), art. No. 109246.

[93]

Liu Y, Wang FL, Chang YQ, Ma RC. Operating optimality assessment and nonoptimal cause identification for non-Gaussian multimode processes with transitions. Chem. Eng. Sci., 2015, 137, 106.

[94]

Zhang B, Yang CH, Zhu HQ, Li YG, Gui WH. Evaluation strategy for the control of the copper removal process based on oxidation-reduction potential. Chem. Eng. J., 2016, 284, 294.

[95]

Zou XY, Wang FL, Chang YQ. Assessment of operating performance using cross-domain feature transfer learning. Control Eng. Pract., 2019, 89, 143.

[96]

Z.H. Zeng, W.H. Gui, X.F. Chen, Y.F. Xie, and R.C. Wu, A mechanism knowledge-driven method for identifying the pseudo dissolution hysteresis coefficient in the industrial aluminium electrolysis process, Control Eng. Pract., 102(2020), art. No. 104533.

[97]

Zhang H, Tang ZH, Xie YF, Chen Q, Gao XL, Gui WH. Feature reconstruction-regression network: A lightweight deep neural network for performance monitoring in the froth flotation. IEEE Trans. Ind. Inf., 2021, 17(12): 8406.

[98]

Zhong LS, Chang YQ, Wang FL, Gao SH. Distributed operating performance assessment of the plant-wide process based on data-driven hybrid characteristics decomposition. Ind. Eng. Chem. Res., 2020, 59(35): 15682.

[99]

Liang HP, Yang CH, Huang KK, Li YG, Gui WH. A hybrid first principles and data-driven process monitoring method for zinc smelting roasting process. IEEE Trans. Instrum. Meas., 2021, 70, 1

[100]

Aldrich C, Moolman DW, Gouws FS, Schmitz GPJ. Machine learning strategies for control of flotation plants. Control Eng. Pract., 1997, 5(2): 263.

[101]

Aldrich C, Marais C, Shean BJ, Cilliers JJ. Online monitoring and control of froth flotation systems with machine vision: A review. Int. J. Miner. Process., 2010, 96(1–4): 1.

[102]

Hyötyniemi H, Ylinen R. Modeling of visual flotation froth data. Control Eng. Pract., 2000, 8(3): 313.

[103]

Liu JJ, MacGregor JF, Duchesne C, Bartolacci G. Flotation froth monitoring using multiresolutional multivariate image analysis. Miner. Eng., 2005, 18(1): 65.

[104]

He MF, Yang CH, Wang XL, Gui WH, Wei LJ. Nonparametric density estimation of froth colour texture distribution for monitoring sulphur flotation process. Miner. Eng., 2013, 53, 203.

[105]

Zhao L, Peng T, Xie YF, Yang CH, Gui WH. Recognition of flooding and sinking conditions in flotation process using soft measurement of froth surface level and QTA. Chemom. Intell. Lab. Syst., 2017, 169, 45.

[106]

Wang XL, Song C, Yang CH, Xie YF. Process working condition recognition based on the fusion of morphological and pixel set features of froth for froth flotation. Miner. Eng., 2018, 128, 17.

[107]

Lu M, Xie DH, Gui WH, Wu LH, Chen CY, Yang CH. A cascaded recognition method for copper rougher flotation working conditions. Chem. Eng. Sci., 2018, 175, 220.

[108]

Fu Y, Aldrich C. Flotation froth image recognition with convolutional neural networks. Miner. Eng., 2019, 132, 183.

[109]

X.L. Gao, Z.H. Tang, Y.F. Xie, H. Zhang, and W.H. Gui, A layered working condition perception integrating handcrafted with deep features for froth flotation, Miner. Eng., 170(2021), art. No. 107059.

[110]

Jämsä-Jounela SL, Vermasvuori M, Endén P, Haavisto S. A process monitoring system based on the Kohonen self-organizing maps. Control Eng. Pract., 2003, 11(1): 83.

[111]

van Vuuren MJJ, Aldrich C, Auret L. Detecting changes in the operational states of hydrocyclones. Miner. Eng., 2011, 24(14): 1532.

[112]

Zhang YW, Chai TY, Li ZM, Yang CY. Modeling and monitoring of dynamic processes. IEEE Trans. Neural Networks Learn. Syst., 2012, 23(2): 277.

[113]

Wu GC, Liu Q, Chai TY, Qin SJ. Abnormal condition diagnosis through deep learning of image sequences for fused magnesium furnaces. Acta Autom. Sin., 2019, 45(8): 1475

[114]

Wu ZW, Wu YJ, Chai TY, Sun J. Data-driven abnormal condition identification and self-healing control system for fused magnesium furnace. IEEE Trans. Ind. Electron., 2015, 62(3): 1703.

[115]

Li H, Wang FL, Li HR. Abnormal condition identification and self-healing control scheme for the electro-fused magnesia smelting process. Acta Autom. Sin., 2020, 46(7): 1411

[116]

Huang KK, Tao Z, Sun B, Yang CH, Gui WH. Industrial process modeling and monitoring based on jointly specific and shared dictionary learning. IEEE Trans. Instrum. Meas., 2022, 71, 1

[117]

Ren H, Chen ZW, Jiang ZH, Yang CH, Gui WH. An industrial multilevel knowledge graph-based local-global monitoring for plant-wide processes. IEEE Trans. Instrum. Meas., 2021, 70, 1

[118]

A.J. Yan, F.H. Wu, and T.Y. Chai, Fault diagnosis expert system using neural networks for roasting process, [in] 16th Triennial World Congress, Prague, 2005, p. 115.

[119]

Jemwa GT, Aldrich C. Kernel-based fault diagnosis on mineral processing plants. Miner. Eng., 2006, 19(11): 1149.

[120]

Xu CH, Gui WH, Yang CH, Zhu HQ, Lin YQ, Shi C. Flotation process fault detection using output PDF of bubble size distribution. Miner. Eng., 2012, 26, 5.

[121]

Li ZM, Gui WH, Zhu JY. Fault detection in flotation processes based on deep learning and support vector machine. J. Cent. South Univ., 2019, 26(9): 2504.

[122]

Lindner B, Auret L, Bauer M, Groenewald JWD. Comparative analysis of Granger causality and transfer entropy to present a decision flow for the application of oscillation diagnosis. J. Process Control, 2019, 79, 72.

[123]

Järvensivu M, Saari K, Jämsä-Jounela SL. Intelligent control system of an industrial lime kiln process. Control Eng. Pract., 2001, 9(6): 589.

[124]

Chai TY, Qin SJ, Wang H. Optimal operational control for complex industrial processes. Annu. Rev. Control, 2014, 38(1): 81.

[125]

Wu ZW, Liu TF, Jiang ZP, Chai TY, Zhang LN. Nonlinear control tools for fused magnesium furnaces: Design and implementation. IEEE Trans. Ind. Electron., 2018, 65(9): 7248.

[126]

Ding JL, Yang CE, Chai TY. Recent progress on data-based optimization for mineral processing plants. Engineering, 2017, 3(2): 183.

[127]

Han J, Yang CH, Lim CC, Zhou XJ, Shi P. Stackelberg-Nash game approach for constrained robust optimization with fuzzy variables. IEEE Trans. Fuzzy Syst., 2021, 29(11): 3519.

[128]

G. Asbjörnsson, L.M. Tavares, A. Mainza, and M. Yahyaei, Different perspectives of dynamics in comminution processes, Miner. Eng., 176(2022), art. No. 107326.

[129]

Niemi A, Paakkinen U. Simulation and control of flotation circuits. Automatica, 1969, 5(5): 551.

[130]

Hodouin D. Methods for automatic control, observation, and optimization in mineral processing plants. J. Process Control, 2011, 21(2): 211.

[131]

Bergh LG, Yianatos JB. The long way toward multivariate predictive control of flotation processes. J. Process Control, 2011, 21(2): 226.

[132]

Shean BJ, Cilliers JJ. A review of froth flotation control. Int. J. Miner. Process., 2011, 100(3–4): 57.

[133]

Gui WH, Yang CH, Chen XF, Wang YL. Modeling and optimization problems and challenges arising in nonferrous metallurgical processes. Acta Autom. Sin., 2013, 39(3): 197.

[134]

Zhou P, Lu SW, Yuan M, Chai TY. Survey on higher-level advanced control for grinding circuits operation. Powder Technol., 2016, 288, 324.

[135]

Ali D, Frimpong S. Artificial intelligence, machine learning and process automation: Existing knowledge frontier and way forward for mining sector. Artif. Intell. Rev., 2020, 53(8): 6025.

[136]

Yin RY. Review on the study of metallurgical process engineering. Int. J. Miner. Metall. Mater., 2021, 28(8): 1253.

[137]

E.N. Pistikopoulos, A. Barbosa-Povoa, J.H. Lee, R. Misener, A. Mitsos, G.V. Reklaitis, V. Venkatasubramanian, F.Q. You, and R. Gani, Process systems engineering—The generation next? Comput. Chem. Eng., 147(2021), art. No. 107252.

[138]

Xu ZJ, Zheng Z, Gao XQ. Operation optimization of the steel manufacturing process: A brief review. Int. J. Miner. Metall. Mater., 2021, 28(8): 1274.

[139]

E. Nolasco, V.S. Vassiliadis, W. Kähm, S.D. Adloor, R.A. Ismaili, R. Conejeros, T. Espaas, N. Gangadharan, V. Mappas, F. Scott, and Q.Y. Zhang, Optimal control in chemical engineering: Past, present and future, Comput. Chem. Eng., 155(2021), art. No. 107528.

[140]

Lin L, Zeng JQ. Consideration of green intelligent steel processes and narrow window stability control technology on steel quality. Int. J. Miner. Metall. Mater., 2021, 28(8): 1264.

[141]

Yang T, Yi XL, Lu SW, Johansson KH, Chai TY. Intelligent manufacturing for the process industry driven by industrial artificial intelligence. Engineering, 2021, 7(9): 1224.

[142]

Desbiens A, Pomerleau A, Najim K. Adaptive predictive control of a grinding circuit. Int. J. Miner. Process., 1994, 41(1–2): 17.

[143]

Radhakrishnan VR. Model based supervisory control of a ball mill grinding circuit. J. Process Control, 1999, 9(3): 195.

[144]

Kämpjärvi P, Jämsä-Jounela SL. Level control strategies for flotation cells. Miner. Eng., 2003, 16(11): 1061.

[145]

Chen XS, Yang J, Li SH, Li Q. Disturbance observer based multi-variable control of ball mill grinding circuits. J. Process Control, 2009, 19(7): 1205.

[146]

Zhu JY, Gui WH, Liu JP, Xu HL, Yang CH. Combined fuzzy based feedforward and bubble size distribution based feedback control for reagent dosage in copper roughing process. J. Process Control, 2016, 39, 50.

[147]

Shean B, Hadler K, Cilliers JJ. A flotation control system to optimise performance using peak air recovery. Chem. Eng. Res. Des., 2017, 117, 57.

[148]

Khodadadi H, Ghadiri H. Fuzzy logic self-tuning PID controller design for ball mill grinding circuits using an improved disturbance observer. Min. Metall. Explor., 2019, 36(6): 1075

[149]

Ramasamy M, Narayanan SS, Rao CDP. Control of ball mill grinding circuit using model predictive control scheme. J. Process Control, 2005, 15(3): 273.

[150]

Chen XS, Li SH, Zhai JY, Li Q. Expert system based adaptive dynamic matrix control for ball mill grinding circuit. Expert Syst. Appl., 2009, 36(1): 716.

[151]

Remes A, Aaltonen J, Koivo H. Grinding circuit modeling and simulation of particle size control at Siilinjärvi concentrator. Int. J. Miner. Process., 2010, 96(1–4): 70.

[152]

le Roux JD, Padhi R, Craig IK. Optimal control of grinding mill circuit using model predictive static programming: A new nonlinear MPC paradigm. J. Process Control, 2014, 24(12): 29.

[153]

Chai TY, Zhang LY, Su CY, Wang H. An intelligent mill load switching control of the pulverizing system for an alumina sintering process. IEEE Trans. Control Syst. Technol., 2012, 20(3): 677.

[154]

Zhang B, Yang CH, Zhu HQ, Shi P, Gui WH. Controllable-domain-based fuzzy rule extraction for copper removal process control. IEEE Trans. Fuzzy Syst., 2018, 26(3): 1744.

[155]

H. Li, F.L. Wang, H.R. Li, and Q.K. Wang, Safety control modeling method based on Bayesian network transfer learning for the thickening process of gold hydrometallurgy, Knowl. Based Syst., 192(2020), art. No. 105297.

[156]

Feng ZX, Li YG, Sun B, Yang CH, Zhu HQ, Chen ZS. A trend-based event-triggering fuzzy controller for the stabilizing control of a large-scale zinc roaster. J. Process. Control, 2021, 97, 59.

[157]

Valenzuela J, Najim K, del Villar R, Bourassa M. Learning control of an autogenous grinding circuit. Int. J. Miner. Process., 1993, 40(1–2): 45.

[158]

Conradie AVE, Aldrich C. Neurocontrol of a ball mill grinding circuit using evolutionary reinforcement learning. Miner. Eng., 2001, 14(10): 1277.

[159]

Sun B, He MF, Wang YL, Gui WH, Yang CH, Zhu QM. A data-driven optimal control approach for solution purification process. J. Process Control, 2018, 68, 171.

[160]

Jiang Y, Fan JL, Chai TY, Li JN, Lewis FL. Data-driven flotation industrial process operational optimal control based on reinforcement learning. IEEE Trans. Ind. Inf., 2018, 14(5): 1974.

[161]

Lu XL, Kiumarsi B, Chai TY, Jiang Y, Lewis FL. Operational control of mineral grinding processes using adaptive dynamic programming and reference governor. IEEE Trans. Ind. Inf., 2019, 15(4): 2210.

[162]

Moolman DW, Aldrich C, van Deventer JSJ, Stange WW. Digital image processing as a tool for on-line monitoring of froth in flotation plants. Miner. Eng., 1994, 7(9): 1149.

[163]

Moolman DW, Eksteen JJ, Aldrich C, van Deventer JSJ. The significance of flotation froth appearance for machine vision control. Int. J. Miner. Process., 1996, 48(3–4): 135.

[164]

Liu JJ, MacGregor JF. Froth-based modeling and control of flotation processes. Miner. Eng., 2008, 21(9): 642.

[165]

Núñez F, Cipriano A. Visual information model based predictor for froth speed control in flotation process. Miner. Eng., 2009, 22(4): 366.

[166]

W.H. Gui, C.H. Yang, D.G. Xu, M. Lu, and Y.F. Xie, Machine-vision-based online measuring and controlling technologies for mineral flotation—A review, Acta Autom. Sin., 39(2013), No. 11, art. No. 1879.

[167]

Zhu JY, Gui WH, Yang CH, Xu HL, Wang XL. Probability density function of bubble size based reagent dosage predictive control for copper roughing flotation. Control Eng. Pract., 2014, 29, 1.

[168]

Maldonado M, Desbiens A, Poulin É, Villar R, Riquelme A. Automatic control of bubble size in a laboratory flotation column. Int. J. Miner. Process., 2015, 141, 27.

[169]

Jahedsaravani A, Marhaban MH, Massinaei M, Saripan MI, Noor SBM. Froth-based modeling and control of a batch flotation process. Int. J. Miner. Process., 2016, 146, 90.

[170]

Xie YF, Wu J, Xu DG, Yang CH, Gui WH. Reagent addition control for stibium rougher flotation based on sensitive froth image features. IEEE Trans. Ind. Electron., 2017, 64(5): 4199.

[171]

J. Zhang, Z.H. Tang, Y.F. Xie, Q. Chen, M.X. Ai, and W.H. Gui, Timed key-value memory network for flotation reagent control, Control Eng. Pract., 98(2020), art. No. 104360.

[172]

Lo YC, Oblad AE, Herbst JA. Cost reduction in grinding plants through process optimization and control. Min. Metall. Explor., 1996, 13(1): 19

[173]

Mitra K, Gopinath R. Multiobjective optimization of an industrial grinding operation using elitist nondominated sorting genetic algorithm. Chem. Eng. Sci., 2004, 59(2): 385.

[174]

Mitra K. Multiobjective optimization of an industrial grinding operation under uncertainty. Chem. Eng. Sci., 2009, 64(23): 5043.

[175]

Sharma S, Pantula PD, Miriyala SS, Mitra K. A novel data-driven sampling strategy for optimizing industrial grinding operation under uncertainty using chance constrained programming. Powder Technol., 2021, 377, 913.

[176]

Maldonado M, Sbarbaro D, Lizama E. Optimal control of a rougher flotation process based on dynamic programming. Miner. Eng., 2007, 20(3): 221.

[177]

Chen XS, Li Q, Fei SM. Supervisory expert control for ball mill grinding circuits. Expert Syst. Appl., 2008, 34(3): 1877.

[178]

Chai TY, Zhao L, Qiu JB, Liu FZ, Fan JL. Integrated network-based model predictive control for setpoints compensation in industrial processes. IEEE Trans. Ind. Inf., 2013, 9(1): 417.

[179]

Sun B, Gui WH, Wang YL, Yang CH. Intelligent optimal setting control of a cobalt removal process. J. Process Control, 2014, 24(5): 586.

[180]

Sun B, Gui WH, Wang YL, Yang CH, He MF. A gradient optimization scheme for solution purification process. Control Eng. Pract., 2015, 44, 89.

[181]

Hu ZK, Gui WH, Peng XQ, Yao JF, Zhang WH. Intelligent optimization of optimal operational pattern in the process of copper converting furnace. Control Theory Appl., 2005, 22(2): 243

[182]

Gui WH, Yang CH, Li YG, He JJ, Yin LZ. Data-driven operational-pattern optimization for copper flash smelting process. Acta Autom. Sin., 2009, 35(6): 717.

[183]

Wu TB, Yang CH, Li YG, Zhu HQ, Gui WH. Fuzzy operational-pattern based operating parameters collaborative optimization of cobalt removal process with arsenic salt. Acta Autom. Sin., 2014, 40(8): 1690

[184]

Cao BF, Xie YF, Gui WH, Yang CH, Li JQ. Coordinated optimization setting of reagent dosages in roughing-scavenging process of antimony flotation. J. Cent. South Univ., 2018, 25(1): 95.

[185]

le Roux JD, Craig IK. Plant-wide control framework for a grinding mill circuit. Ind. Eng. Chem. Res., 2019, 58(26): 11585.

[186]

Bascur OA, Soudek A. Grinding and flotation optimization using operational intelligence. Min. Metall. Explor., 2019, 36(1): 139

AI Summary AI Mindmap
PDF

264

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/