Recent progress in the structure optimization and development of proton-conducting electrolyte materials for low-temperature solid oxide cells

Jia Song , Yuvraj Y. Birdja , Deepak Pant , Zhiyuan Chen , Jan Vaes

International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (4) : 848 -869.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (4) : 848 -869. DOI: 10.1007/s12613-022-2447-y
Invited Review

Recent progress in the structure optimization and development of proton-conducting electrolyte materials for low-temperature solid oxide cells

Author information +
History +
PDF

Abstract

This work reviews technologies that can be used to develop low-temperature solid oxide cells (LT-SOCs) and can be applied in fuel cells and electrolyzers operating at temperatures below 500°C, thus providing a more cost-effective alternative than conventional high-temperature SOCs. Two routes showing potential to reduce the operating temperature of SOCs to below 500°C are discussed. The first route is the principal way to enhance cell performance, namely, structure optimization. This technique includes the reduction of electrolyte thickness to the nanometer scale and the exploration of electrode structure with low polarization resistance. The other route is the development of novel proton-conducting electrolyte materials, which is in the frontier of SOCs study. The fundamentals of proton conduction and the design principles of commonly used electrolyte materials are briefly explained. The most widely studied electrolyte materials for LT-SOCs, namely, perovskite-type BaCeO3- and BaZrO3-based oxides, and the effect of doping on the physical—chemical properties of these oxide materials are summarized.

Keywords

low-temperature solid oxide cells / perovskite / doping / thin-film

Cite this article

Download citation ▾
Jia Song, Yuvraj Y. Birdja, Deepak Pant, Zhiyuan Chen, Jan Vaes. Recent progress in the structure optimization and development of proton-conducting electrolyte materials for low-temperature solid oxide cells. International Journal of Minerals, Metallurgy, and Materials, 2022, 29(4): 848-869 DOI:10.1007/s12613-022-2447-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Rosli RE, Sulong AB, Daud WRW, Zulkifley MA, Husaini T, Rosli MI, Majlan EH, Haque MA. A review of high-temperature proton exchange membrane fuel cell (HT-PEMFC) system. Int. J. Hydrogen Energy, 2017, 42(14): 9293.

[2]

Liu ZJ, Zhou MY, Chen ML, Cao D, Shao J, Liu ML, Liu J. A high-performance intermediate-to-low temperature protonic ceramic fuel cell with in situ exsolved nickel nanoparticles in the anode. Ceram. Int., 2020, 46(12): 19952.

[3]

H.P. Ding, W. Wu, C. Jiang, Y. Ding, W.J. Bian, B.X. Hu, P. Singh, C.J. Orme, L.C. Wang, Y.Y. Zhang, and D. Ding, Self-sustainable protonic ceramic electrochemical cells using a triple conducting electrode for hydrogen and power production, Nat. Commun., 11(2020), art. No. 1907.

[4]

R. Raza, B. Zhu, A. Rafique, M.R. Naqvi, and P. Lund, Functional ceria-based nanocomposites for advanced low-temperature (300–600°C) solid oxide fuel cell: A comprehensive review, Mater. Today Energy, 15(2020), art. No. 100373.

[5]

Meng YQ, Gao J, Zhao ZY, Amoroso J, Tong JH, Brinkman KS. Review: Recent progress in low-temperature proton-conducting ceramics. J. Mater. Sci., 2019, 54(13): 9291.

[6]

Y.Q. Meng, J. Gao, H. Huang, M.D. Zou, J. Duffy, J.H. Tong, and K.S. Brinkman, A high-performance reversible protonic ceramic electrochemical cell based on a novel Sm-doped BaCe0.7Zr0.1Y0.2O3−δ electrolyte, J. Power Sources, 439(2019), art. No. 227093.

[7]

Noh HS, Hong J, Kim H, Yoon KJ, Kim BK, Lee HW, Lee JH, Son JW. Scale-up of thin-film deposition-based solid oxide fuel cell by sputtering, a commercially viable thin-film technology. J. Electrochem. Soc., 2016, 163(7): F613.

[8]

Noh HS, Yoon KJ, Kim BK, Je HJ, Lee HW, Lee JH, Son JW. Thermo-mechanical stability of multi-scale-architectured thin-film-based solid oxide fuel cells assessed by thermal cycling tests. J. Power Sources, 2014, 249, 125.

[9]

Garbayo I, Pla D, Morata A, Fonseca L, Sabaté N, Tarancón A. Full ceramic micro solid oxide fuel cells: Towards more reliable MEMS power generators operating at high temperatures. Energy Environ. Sci., 2014, 7(11): 3617.

[10]

H. Huang, M. Nakamura, P.C. Su, R. Fasching, Y. Saito, and F.B. Prinz, High-performance ultrathin solid oxide fuel cells for low-temperature operation, J. Electrochem. Soc., 154(2007), No. 1, art. No. B20.

[11]

Lai BK, Kerman K, Ramanathan S. Nanostructured La0.6Sr0.4Co0.8Fe0.2O3/Y0.08Zr0.92O1.96/La0.6Sr0.4Co0.8Fe0.2O3 (LSCF/YSZ/LSCF) symmetric thin film solid oxide fuel cells. J. Power Sources, 2011, 196(4): 1826.

[12]

K. Bae, D.Y. Jang, H.J. Choi, D. Kim, J. Hong, B.K. Kim, J.H. Lee, J.W. Son, and J.H. Shim, Demonstrating the potential of yttrium-doped Barium zirconate electrolyte for highperformance fuel cells, Nat. Commun., 8(2017), No. 1, art. No. 14553.

[13]

J.W. Shin, D. Go, S.H. Kye, S. Lee, and J. An, Review on process-microstructure-performance relationship in ALD-engineered SOFCs, J. Phys. Energy, 1(2019), No. 4, art. No. 042002.

[14]

Fan Z, Prinz FB. Enhancing oxide ion incorporation kinetics by nanoscale yttria-doped ceria interlayers. Nano Lett., 2011, 11(6): 2202.

[15]

Yang H, Lee H, Lim Y, Kim YB. Atomic layer deposition of GDC cathodic functional thin films for oxide ion incorporation enhancement. J. Am. Ceram. Soc., 2021, 104(1): 86.

[16]

Bernay C, Ringuedé A, Colomban P, Lincot D, Cassir M. Yttria-doped zirconia thin films deposited by atomic layer deposition ALD: A structural, morphological and electrical characterisation. J. Phys. Chem. Solids, 2003, 64(9–10): 1761.

[17]

Baek JD, Liu KY, Su PC. A functional micro-solid oxide fuel cell with a 10 nm-thick freestanding electrolyte. J. Mater. Chem. A, 2017, 5(35): 18414.

[18]

K. Kerman and S. Ramanathan, Performance of solid oxide fuel cells approaching the two-dimensional limit, J. Appl. Phys., 115(2014), No. 17, art. No. 174307.

[19]

Wachsman ED, Lee KT. Lowering the temperature of solid oxide fuel cells. Sci., 2011, 334(6058): 935.

[20]

Nédélec R, Uhlenbruck S, Sebold D, Haanappel VAC, Buchkremer HP, Stöver D. Dense yttria-stabilised zirconia electrolyte layers for SOFC by reactive magnetron sputtering. J. Power Sources, 2012, 205, 157.

[21]

Wang HQ, Ji WJ, Zhang L, Gong YH, Xie B, Jiang YS, Song YZ. Preparation of YSZ films by magnetron sputtering for anode-supported SOFC. Solid State Ionics, 2011, 192(1): 413.

[22]

Kelder EM, Nijs OCJ, Schoonman J. Low-temperature synthesis of thin films of YSZ and BaCeO3 using electrostatic spray pyrolysis (ESP). Solid State Ionics, 1994, 68(1–2): 5.

[23]

Ksapabutr B, Chalermkiti T, Wongkasemjit S, Panapoy M. Fabrication of scandium stabilized zirconia thin film by electrostatic spray deposition technique for solid oxide fuel cell electrolyte. Thin Solid Films, 2010, 518(22): 6518.

[24]

Chalermkiti T, Panapoy M, Chaiyut N, Ksapabutr B. Fabrication of samarium doped ceria electrolyte on rough glass substrate with high electrical conductivity by electrostatic spray deposition for intermediate temperature solid oxide fuel cells. Energy Procedia, 2013, 34, 471.

[25]

Taniguchi I, Van Landschoot RC, Schoonman J. Fabrication of La1−xSrxCo1−yFeyO3 thin films by electrostatic spray deposition. Solid State Ionics, 2003, 156(1–2): 1.

[26]

Perednis D, Wilhelm O, Pratsinis SE, Gauckler LJ. Morphology and deposition of thin yttria-stabilized zirconia films using spray pyrolysis. Thin Solid Films, 2005, 474(1–2): 84.

[27]

T. Schneller and D. Griesche, Inkjet printed Y-substituted Barium zirconate layers as electrolyte membrane for thin film electrochemical devices, Membranes, 9(2019), No. 10, art. No. 131.

[28]

Pikalova EY, Kalinina EG. Place of electrophoretic deposition among thin-film methods adapted to the solid oxide fuel cell technology: A short review. Int. J. Energy Prod. Manage., 2019, 4(1): 1

[29]

Engels J, Griesche D, Waser R, Schneller T. Thin film proton conducting membranes for micro-solid oxide fuel cells by chemical solution deposition. Thin Solid Films, 2017, 636, 446.

[30]

van Gestel T, Sebold D, Buchkremer HP. Processing of 8YSZ and CGO thin film electrolyte layers for intermediate- and low-temperature SOFCs. J. Eur. Ceram. Soc., 2015, 35(5): 1505.

[31]

Park JH, Han SM, Yoon KJ, Kim H, Hong J, Kim BK, Lee JH, Son JW. Impact of nanostructured anode on low-temperature performance of thin-film-based anode-supported solid oxide fuel cells. J. Power Sources, 2016, 315, 324.

[32]

Park JH, Han SM, Kim BK, Lee JH, Yoon KJ, Kim H, Ji HI, Son JW. Sintered powder-base cathode over vacuum-deposited thin-film electrolyte of low-temperature solid oxide fuel cell: Performance and stability. Electrochim. Acta, 2019, 296, 1055.

[33]

Bae K, Lee S, Jang DY, Kim HJ, Lee H, Shin D, Son JW, Shim JH. High-performance protonic ceramic fuel cells with thin-film yttrium-doped barium cerate-zirconate electrolytes on compositionally gradient anodes. ACS Appl. Mater. Interfaces, 2016, 8(14): 9097.

[34]

Noh HS, Yoon KJ, Kim BK, Je HJ, Lee HW, Lee JH, Son JW. The potential and challenges of thin-film electrolyte and nanostructured electrode for yttria-stabilized zirconia-base anode-supported solid oxide fuel cells. J. Power Sources, 2014, 247, 105.

[35]

Cho GY, Lee YH, Hong SW, Bae J, An J, Kim YB, Cha SW. High-performance thin film solid oxide fuel cells with scandia-stabilized zirconia (ScSZ) thin film electrolyte. Int. J. Hydrogen Energy, 2015, 40(45): 15704.

[36]

G.Y. Cho, Y. Kim, S.W. Hong, W. Yu, Y.B. Kim, and S.W. Cha, Optimization of ScSZ/GDC bilayer thin film electrolyte for anodic aluminum oxide supported low temperature solid oxide fuel cells, Nanotechnology, 29(2018), No. 34, art. No. 345401.

[37]

An J, Kim YB, Park J, Gür TM, Prinz FB. Three-dimensional nanostructured bilayer solid oxide fuel cell with 1.3 W/cm2 at 450°C. Nano Lett., 2013, 13(9): 4551.

[38]

Lee YH, Chang I, Cho GY, Park J, Yu W, Tanveer WH, Cha SW. Thin film solid oxide fuel cells operating below 600°C: A review. Int. J. Precis. Eng. Manuf. Green Technol., 2018, 5(3): 441.

[39]

Tsuchiya M, Lai BK, Ramanathan S. Scalable nanostructured membranes for solid-oxide fuel cells. Nat. Nanotechnol., 2011, 6(5): 282.

[40]

Noh HS, Son JW, Lee H, Ji HI, Lee JH, Lee HW. Suppression of Ni agglomeration in PLD fabricated Ni-YSZ composite for surface modification of SOFC anode. J. Eur. Ceram. Soc., 2010, 30(16): 3415.

[41]

Kang S, Lee J, Cho GY, Kim Y, Lee SH, Cha SW, Bae J. Scalable fabrication process of thin-film solid oxide fuel cells with an anode functional layer design and a sputtered electrolyte. Int. J. Hydrogen Energy, 2020, 45(58): 33980.

[42]

Jo S, Sharma B, Park DH, Myung JH. Materials and nano-structural processes for use in solid oxide fuel cells: A review. J. Korean Ceram. Soc., 2020, 57(2): 135.

[43]

Muecke UP, Beckel D, Bernard A, Bieberle-Hütter A, Graf S, Infortuna A, Müller P, Rupp JLM, Schneider J, Gauckler LJ. Micro solid oxide fuel cells on glass ceramic substrates. Adv. Funct. Mater., 2008, 18(20): 3158.

[44]

Fleig J, Tuller HL, Maier J. Electrodes and electrolytes in micro-SOFCs: A discussion of geometrical constraints. Solid State Ionics, 2004, 174(1–4): 261.

[45]

Ishihara T, Eto H, Yan JW. Intermediate temperature solid oxide fuel cells using LaGaO3 based oxide film deposited by PLD method. Int. J. Hydrogen Energy, 2011, 36(2): 1862.

[46]

Pandiyan A, Uthayakumar A, Subrayan R, Cha SW, Krishna Moorthy SB. Review of solid oxide electrolysis cells: A clean energy strategy for hydrogen generation. Nanomater. Energy, 2019, 8(1): 2.

[47]

Wang SR, Hao X, Zhan WT. Research on a low temperature reversible solid oxide cell. Int. J. Hydrogen Energy, 2017, 42(50): 29881.

[48]

Thieu CA, Hong J, Kim H, Yoon KJ, Lee JH, Kim BK, Son JW. Incorporation of a Pd catalyst at the fuel electrode of a thin-film-based solid oxide cell by multi-layer deposition and its impact on low-temperature co-electrolysis. J. Mater. Chem. A, 2017, 5(16): 7433.

[49]

H. Shimada, T. Yamaguchi, H. Kishimoto, H. Sumi, Y. Yamaguchi, K. Nomura, and Y. Fujishiro, Nanocomposite electrodes for high current density over 3 A cm−2 in solid oxide electrolysis cells, Nat. Commun., 10(2019), art. No. 5432.

[50]

Li WY, Guan B, Ma L, Tian HC, Liu XB. Synergistic coupling of proton conductors BaZr0.1Ce0.7Y0.1Yb0.1O3−δ and La2Ce2O7 to create chemical stable, interface active electrolyte for steam electrolysis cells. ACS Appl. Mater. Interfaces, 2019, 11(20): 18323.

[51]

Bernadet L, Moncasi C, Torrell M, Tarancón A. High-performing electrolyte-supported symmetrical solid oxide electrolysis cells operating under steam electrolysis and co-electrolysis modes. Int. J. Hydrogen Energy, 2020, 45(28): 14208.

[52]

Khan MZ, Song RH, Mehran MT, Lee SB, Lim TH. Controlling cation migration and inter-diffusion across cathode/interlayer/electrolyte interfaces of solid oxide fuel cells: A review. Ceram. Int., 2021, 47(5): 5839.

[53]

Phadke SR, Bowers CR, Wachsman ED, Nino JC. Proton conduction in acceptor doped SnP2O7. Solid State Ionics, 2011, 183(1): 26.

[54]

Lapina A, Chatzichristodoulou C, Hallinder J, Holtappels P, Mogensen M. Electrical conductivity of titanium pyrophosphate between 100 and 400°C: Effect of sintering temperature and phosphorus content. J. Solid State Electrochem., 2014, 18(1): 39.

[55]

Wang LS, Barnett SA. Ag-perovskite cermets for thin film solid oxide fuel cell air-electrode applications. Solid State Ionics, 1995, 76(1–2): 103.

[56]

J.L. Hertz and H.L. Tuller, Nanocomposite platinum—yttria stabilized zirconia electrode and implications for micro-SOFC operation, J. Electrochem. Soc., 154(2007), No. 4, art. No. B413.

[57]

Garcia-Garcia FJ, Yubero F, González-Elipe AR, Balomenou SP, Tsiplakides D, Petrakopoulou I, Lambert RM. Porous, robust highly conducting Ni-YSZ thin film anodes prepared by magnetron sputtering at oblique angles for application as anodes and buffer layers in solid oxide fuel cells. Int. J. Hydrogen Energy, 2015, 40(23): 7382.

[58]

J.H. Park, J.H. Lee, K.J. Yoon, H. Kim, H.I. Ji, S. Yang, S. Park, S.M. Han, and J.W. Son, A nanoarchitectured cermet composite with extremely low Ni content for stable high-performance solid oxide fuel cells, Acta Mater., 206(2021), art. No. 116580.

[59]

T.M. Onn, R. Küngas, P. Fornasiero, K. Huang, and R.J. Gorte, Atomic layer deposition on porous materials: Problems with conventional approaches to catalyst and fuel cell electrode preparation, Inorg., 6(2018), No. 1, art. No. 34.

[60]

Oh S, Hong S, Kim HJ, Kim YB, An J. Enhancing thermal-stability of metal electrodes with a sputtered gadolinia-doped ceria over-layer for low-temperature solid oxide fuel cells. Ceram. Int., 2017, 43(7): 5781.

[61]

Zhou J, Shin TH, Ni CS, Chen G, Wu K, Cheng YH, Irvine JTS. In situ growth of nanoparticles in layered perovskite La0.8Sr1.2Fe0.9Co0.1O4−δ as an active and stable electrode for symmetrical solid oxide fuel cells. Chem. Mater., 2016, 28(9): 2981.

[62]

J. Zhou, J.M. Yang, Z. Zong, L. Fu, Z.J. Lian, C.S. Ni, J.K. Wang, Y.H. Wan, and K. Wu, A mesoporous catalytic fiber architecture decorated by exsolved nanoparticles for reversible solid oxide cells, J. Power Sources, 468(2020), art. No. 228349.

[63]

Li JB, Xie WF, Zhang SM, Xu SM, Shao MF. Boosting the rate performance of Li-S batteries under high mass-loading of sulfur based on a hierarchical NCNT@Co-CoP nanowire integrated electrode. J. Mater. Chem. A, 2021, 9(18): 11151.

[64]

S.Y. Lim, S. Martin, G.H. Gao, Y.B. Dou, S.B. Simonsen, J.O. Jensen, Q.F. Li, K. Norrman, S. Jing, and W.J. Zhang, Self-standing nanofiber electrodes with Pt-Co derived from electrospun zeolitic imidazolate framework for high temperature PEM fuel cells, Adv. Funct. Mater., 31(2021), No. 7, art. No. 2006771.

[65]

Gong JY, Wu PC, Bai ZC, Ma JJ, Li T, Yao YL, Jiang CR. Insight into the electrospinning process for SOFC cathode nanofibers. J. Phys. Chem. C, 2021, 125(13): 7044.

[66]

Zhang XJ, Li J, Wang L, Guo X, Sun HB, Zhang H, Hu QQ. Improved electrochemical performance of Bi doped La0.8Sr0.2FeO3−δ nanofiber cathode for IT-SOFCs via electrospinning. Ceram. Int., 2021, 47(1): 534.

[67]

Parbey J, Xu M, Lei JL, Espinoza-Andaluz M, Li TS, Andersson M. Electrospun fabrication of nanofibers as high-performance cathodes of solid oxide fuel cells. Ceram. Int., 2020, 46(5): 6969.

[68]

Zhang YX, Yan FY, Yan MF, Wan YH, Jiao ZJ, Xia CR, Chen FL, Ni M. High-throughput, super-resolution 3D reconstruction of nano-structured solid oxide fuel cell electrodes and quantification of microstructure-property relationships. J. Power Sources, 2019, 427, 112.

[69]

Chen JY, Wang X, Boldrin P, Brandon NP, Atkinson A. Hierarchical dual-porosity nanoscale nickel cermet electrode with high performance and stability. Nanoscale, 2019, 11(38): 17746.

[70]

Ouyang MZ, Bertei A, Cooper SJ, Wu YF, Boldrin P, Liu XH, Kishimoto M, Wang HZ, Naylor Marlow M, Chen JY, Chen XL, Xia YH, Wu B, Brandon NP. Model-guided design of a high performance and durability Ni nanofiber/ceria matrix solid oxide fuel cell electrode. J. Energy Chem., 2021, 56, 98.

[71]

Vohs JM, Gorte RJ. High-performance SOFC cathodes prepared by infiltration. Adv. Mater., 2009, 21(9): 943.

[72]

Hua B, Yan N, Li M, Sun YF, Zhang YQ, Li J, Etsell T, Sarkar P, Luo JL. Anode-engineered protonic ceramic fuel cell with excellent performance and fuel compatibility. Adv. Mater., 2016, 28(40): 8922.

[73]

Liu Y, Zha SW, Liu ML. Novel nanostructured electrodes for solid oxide fuel cells fabricated by combustion chemical vapor deposition (CVD). Adv. Mater., 2004, 16(3): 256.

[74]

L.Z. Bian, C.C. Duan, L.J. Wang, Z.Y. Chen, Y.T. Hou, J. Peng, X.W. Song, S.L. An, and R. O’Hayre, An all-oxide electrolysis cells for syngas production with tunable H2/CO yield via co-electrolysis of H2O and CO2, J. Power Sources, 482(2021), art. No. 228887.

[75]

Boldrin P, Ruiz-Trejo E, Mermelstein J, Bermúdez Menéndez JM, Ramírez Reina T, Brandon NP. Strategies for carbon and sulfur tolerant solid oxide fuel cell materials, incorporating lessons from heterogeneous catalysis. Chem. Rev., 2016, 116(22): 13633.

[76]

D. Ding, X.X. Li, S.Y. Lai, K. Gerdes, and M.L. Liu, Enhancing SOFC cathode performance by surface modification through infiltration, Energy Environ. Sci., 7(2014), No. 2, art. No. 552.

[77]

Liu KY, Fan LD, Yu CC, Su PC. Thermal stability and performance enhancement of nano-porous platinum cathode in solid oxide fuel cells by nanoscale ZrO2 capping. Electrochem. Commun., 2015, 56, 65.

[78]

I. Chang, S. Ji, J. Park, M.H. Lee, and S.W. Cha, Ultrathin YSZ coating on Pt cathode for high thermal stability and enhanced oxygen reduction reaction activity, Adv. Energy Mater., 5(2015), No. 10, art. No. 1402251.

[79]

Karimaghaloo A, Andrade AM, Grewal S, Shim JH, Lee MH. Mechanism of cathodic performance enhancement by a few-nanometer-thick oxide overcoat on porous Pt cathodes of solid oxide fuel cells. ACS Omega, 2017, 2(3): 806.

[80]

Kreuer KD. Proton-conducting oxides. Annu. Rev. Mater. Res., 2003, 33, 333.

[81]

Iwahara H, Esaka T, Uchida H, Maeda N. Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production. Solid State Ionics, 1981, 3–4, 359.

[82]

Norby T. Solid-state protonic conductors: Principles, properties, progress and prospects. Solid State Ionics, 1999, 125(1–4): 1.

[83]

O. Paschos, J. Kunze, U. Stimming, and F. Maglia, A review on phosphate based, solid state, protonic conductors for intermediate temperature fuel cells, J. Phys.: Condens. Matter, 23(2011), No. 23, art. No. 234110.

[84]

Stenina IA, Yaroslavtsev AB. Low- and intermediate-temperature proton-conducting electrolytes. Inorg. Mater., 2017, 53(3): 253.

[85]

Kim J, Sengodan S, Kim S, Kwon O, Bu Y, Kim G. Proton conducting oxides: A review of materials and applications for renewable energy conversion and storage. Renewable Sustainable Energy Rev., 2019, 109, 606.

[86]

Hossain S, Abdalla AM, Jamain SNB, Zaini JH, Azad AK. A review on proton conducting electrolytes for clean energy and intermediate temperature-solid oxide fuel cells. Renewable Sustainable Energy Rev., 2017, 79, 750.

[87]

Takahashi H, Yashima I, Amezawa K, Eguchi K, Matsumoto H, Takamura H, Yamaguchi S. First-principles calculations for the energetics of the hydration reaction of acceptor-doped BaZrO3. Chem. Mater., 2017, 29(4): 1518.

[88]

Kjølseth C, Wang LY, Haugsrud R, Norby T. Determination of the enthalpy of hydration of oxygen vacancies in Y-doped BaZrO3 and BaCeO3 by TG—DSC. Solid State Ionics, 2010, 181(39–40): 1740.

[89]

Y.H. Jing and N.R. Aluru, The role of A-site ion on proton diffusion in perovskite oxides (ABO3), J. Power Sources, 445(2020), art. No. 227327.

[90]

S.J. Stokes and M.S. Islam, Defect chemistry and proton-dopant association in BaZrO3 and BaPrO3, J. Mater. Chem., 20(2010), No. 30, art. No. 6258.

[91]

Dawson JA, Tanaka I. Proton incorporation and trapping in ZrO2 grain boundaries. J. Mater. Chem. A, 2014, 2(5): 1400.

[92]

J.A. Dawson, H. Chen, and I. Tanaka, Protonic defects in yttria stabilized zirconia: Incorporation, trapping and migration, Phys. Chem. Chem. Phys., 16(2014), No. 10, art. No. 4814.

[93]

Yamazaki Y, Blanc F, Okuyama Y, Buannic L, Lucio-Vega JC, Grey CP, Haile SM. Proton trapping in yttrium-doped barium zirconate. Nat. Mater., 2013, 12(7): 647.

[94]

Karmonik C, Udovic TJ, Paul RL, Rush JJ, Lind K, Hempelmann R. Observation of dopant effects on hydrogen modes in SrCe0.95M0.05HxO3−δ by neutron vibrational spectroscopy. Solid State Ionics, 1998, 109(3–4): 207.

[95]

Hempelmann R, Soetratmo M, Hartmann O, Wäppling R. Muon diffusion and trapping in proton conducting oxides. Solid State Ionics, 1998, 107(3–4): 269.

[96]

Kim HS, Jang A, Choi SY, Jung W, Chung SY. Vacancy-induced electronic structure variation of acceptors and correlation with proton conduction in perovskite oxides. Angew. Chem. Int. Ed., 2016, 55(43): 13499.

[97]

Oikawa I, Takamura H. Correlation among oxygen vacancies, protonic defects, and the acceptor dopant in Sc-doped BaZrO3 studied by 45Sc nuclear magnetic resonance. Chem. Mater., 2015, 27(19): 6660.

[98]

Wang S, Shen JX, Zhu ZW, Wang ZH, Cao YX, Guan XL, Wang YY, Wei ZL, Chen MN. Further optimization of Barium cerate properties via co-doping strategy for potential application as proton-conducting solid oxide fuel cell electrolyte. J. Power Sources, 2018, 387, 24.

[99]

JD, Wang L, Fan LH, Li YH, Dai L, Guo HX. Chemical stability of doped BaCeO3 BaZrO3 solid solutions in different atmospheres. J. Rare Earths, 2008, 26(4): 505.

[100]

Kim JH, Kang YM, Byun MS, Hwang KT. Study on the chemical stability of Y-doped BaCeO3™δ and BaZrO3−δ films deposited by aerosol deposition. Thin Solid Films, 2011, 520(3): 1015.

[101]

Katahira K, Kohchi Y, Shimura T, Iwahara H. Protonic conduction in Zr-substituted BaCeO3. Solid State Ionics, 2000, 138(1–2): 91.

[102]

Pergolesi D, Fabbri E, D’Epifanio A, Di Bartolomeo E, Tebano A, Sanna S, Licoccia S, Balestrino G, Traversa E. High proton conduction in grain-boundary-free yttrium-doped Barium zirconate films grown by pulsed laser deposition. Nat. Mater., 2010, 9(10): 846.

[103]

Zhu ZW, Wang S, Shen JX, Meng XG, Cao YX, Wang ZH, Wei ZL. Effect of low-level Ca2+ substitution at perovskite B site on the properties of BaZr0.8Y0.2O3−δ. J. Alloys Compd., 2019, 805, 718.

[104]

Iguchi F, Tsurui T, Sata N, Nagao Y, Yugami H. The relationship between chemical composition distributions and specific grain boundary conductivity in Y-doped BaZrO3 proton conductors. Solid State Ionics, 2009, 180(6–8): 563.

[105]

Iguchi F, Sata N, Tsurui T, Yugami H. Microstructures and grain boundary conductivity of BaZr1−xYxO3 (x = 0.05, 0.10, 0.15) ceramics. Solid State Ionics, 2007, 178(7–10): 691.

[106]

Zuo CD, Zha SW, Liu ML, Hatano M, Uchiyama M. Ba(Zr0.1Ce0.7Y0.2)O3−δ as an electrolyte for low-temperature solid-oxide fuel cells. Adv. Mater., 2006, 18(24): 3318.

[107]

Yin JL, Wang XW, Xu JH, Wang HT, Zhang F, Ma GL. Ionic conduction in BaCe0.85−xZrxEr0.15O3−α and its application to ammonia synthesis at atmospheric pressure. Solid State Ionics, 2011, 185(1): 6.

[108]

Hakim M, Yoo CY, Joo JH, Yu JH. Enhanced durability of a proton conducting oxide fuel cell with a purified yttrium-doped barium zirconate-cerate electrolyte. J. Power Sources, 2015, 278, 320.

[109]

Yang SJ, Wen YB, Zhang SP, Gu S, Wen ZY, Ye XF. Performance and stability of BaCe0.8−xZr0.2InxO3−δ-based materials and reversible solid oxide cells working at intermediate temperature. Int. J. Hydrogen Energy, 2017, 42(47): 28549.

[110]

E. Bévillon, G. Dezanneau, and G. Geneste, Oxygen incorporation in acceptor-doped perovskites, Phys. Rev. B, 83(2011), No. 17, art. No. 174101.

[111]

L. He, F. Zhang, Y. Xuan, L. Zhang, H.Y. Gao, H.Q. Pan, S. Lian, M.Y. Wang, J.K. Yin, X. Chen, J.F. Ren, and M.N. Chen, Unveiling the effect of dopants on the hydration reaction and proton conduction of Nd and Y co-doped BaZrO3 in solid oxide fuel cells, J. Electrochem. Soc., 168(2021), No. 3, art. No. 034517.

[112]

Gonçalves MD, Maram PS, Muccillo R, Navrotsky A. Enthalpy of formation and thermodynamic insights into yttrium doped BaZrO3. J. Mater. Chem. A, 2014, 2(42): 17840.

[113]

Kreuer KD, Adams S, Münch W, Fuchs A, Klock U, Maier J. Proton conducting alkaline earth zirconates and titanates for high drain electrochemical applications. Solid State Ionics, 2001, 145(1–4): 295.

[114]

Schober T, Bohn HG. Water vapor solubility and electrochemical characterization of the high temperature proton conductor BaZr0.9Y0.1O2.95. Solid State Ionics, 2000, 127(3–4): 351.

[115]

Kreuer KD. Aspects of the formation and mobility of protonic charge carriers and the stability of perovskite-type oxides. Solid State Ionics, 1999, 125(1–4): 285.

[116]

D. Tsvetkov, I. Ivanov, D. Malyshkin, V. Sereda, and A. Zuev, Thermoelectric behavior of BaZr0.9Y0.1O3−d proton conducting electrolyte, Membr., 9(2019), No. 9, art. No. 120.

[117]

Ricote S, Bonanos N, Caboche G. Water vapour solubility and conductivity study of the proton conductor BaCe(0.9−x)ZrxY0.1O(3−δ). Solid State Ionics, 2009, 180(14–16): 990.

[118]

Zhu HY, Ricote S, Duan CC, O’Hayre RP, Tsvetkov DS, Kee RJ. Defect incorporation and transport within dense BaZr0.8Y0.2O3−δ(BZY20) proton-conducting membranes. J. Electrochem. Soc., 2018, 165(9): F581.

[119]

Yamazaki Y, Babilo P, Haile SM. Defect chemistry of yttrium-doped Barium zirconate: A thermodynamic analysis of water uptake. Chem. Mater., 2008, 20(20): 6352.

[120]

Giannici F, Longo A, Balerna A, Kreuer KD, Martorana A. Proton dynamics in in: BaZrO3: Insights on the atomic and electronic structure from X-ray absorption spectroscopy. Chem. Mater., 2009, 21(13): 2641.

[121]

Løken A, Bjorheim TS, Haugsrud R. The pivotal role of the dopant choice on the thermodynamics of hydration and associations in proton conducting BaCe0.9X0.1O3−δ (X = Sc, Ga, Y, In, Gd and Er). J. Mater. Chem. A, 2015, 3(46): 23289.

[122]

Zhu HY, Ricote S, Duan CC, O’Hayre RP, Kee RJ. Defect chemistry and transport within dense BaCe0.7Zr0.1Y0.1Yb0.1O3−δ (BCZYYb) proton-conducting membranes. J. Electrochem. Soc., 2018, 165(10): F845.

[123]

Allred AL, Rochow EG. A scale of electronegativity based on electrostatic force. J. Inorg. Nucl. Chem., 1958, 5(4): 264.

[124]

Bohn HG, Schober T. Electrical conductivity of the high-temperature proton conductor BaZr0.9Y0.1O2.95. J. Am. Ceram. Soc., 2000, 83(4): 768.

[125]

M.E. Björketun, P.G. Sundell, and G. Wahnström, Effect of acceptor dopants on the proton mobility in BaZrO3: A density functional investigation, Phys. Rev. B, 76(2007), No. 5, art. No. 054307.

[126]

B. Merinov and W. Goddard, Proton diffusion pathways and rates in Y-doped BaZrO3 solid oxide electrolyte from quantum mechanics, J. Chem. Phys., 130(2009), No. 19, art. No. 194707.

[127]

Sahraoui DZ, Mineva T. Effect of dopant nature on structures and lattice dynamics of proton-conducting BaZrO3. Solid State Ionics, 2013, 253, 195.

[128]

Yang XF, Jia LC, Pan BC, Chi B, Pu J, Li J. Mechanism of proton conduction in doped Barium cerates: A first-principles study. J. Phys. Chem. C, 2020, 124(14): 8024.

[129]

Ding JL, Balachandran J, Sang XH, Guo W, Anchell JS, Veith GM, Bridges CA, Cheng YQ, Rouleau CM, Poplawsky JD, Bassiri-Gharb N, Unocic RR, Ganesh P. The influence of local distortions on proton mobility in acceptor doped perovskites. Chem. Mater., 2018, 30(15): 4919.

[130]

G. Accardo, D. Frattini, and S.P. Yoon, Enhanced proton conductivity of Gd—Co bi-doped barium cerate perovskites based on structural and microstructural investigations, J. Alloys Compd., 834(2020), art. No. 155114.

[131]

Radojković A, Žunić M, Savić SM, Perać S, Golić DL, Branković Z, Branković G. Co-doping as a strategy for tailoring the electrolyte properties of BaCe0.9Y0.1O3−δ. Ceram. Int., 2019, 45(7): 8279.

[132]

Holz LIV, Graça VCD, Loureiro FJA, Fagg DP. Analysis of the electrochemical transport properties of doped Barium cerate for proton conductivity in low humidity conditions: A review. Analytical Chemistry — Advancement, Perspectives and Applications, 2020, London, IntechOpen

[133]

Gilardi E, Fabbri E, Bi L, Rupp JLM, Lippert T, Pergolesi D, Traversa E. Effect of dopant-host ionic radii mismatch on acceptor-doped barium zirconate microstructure and proton conductivity. J. Phys. Chem. C, 2017, 121(18): 9739.

[134]

Sun WP, Liu MF, Liu W. Chemically stable yttrium and tin co-doped Barium zirconate electrolyte for next generation high performance proton-conducting solid oxide fuel cells. Adv. Energy Mater., 2013, 3(8): 1041.

[135]

Satapathy A, Sinha E. A comparative proton conductivity study on Yb-doped BaZrO3 perovskite at intermediate temperatures under wet N2 environment. J. Alloys Compd., 2019, 772, 675.

[136]

A. Satapathy, E. Sinha, and S.K. Rout, Investigation of proton conductivity in Sc and Yb co-doped barium zirconate ceramics, Mater. Res. Express, 6(2019), No. 5, art. No. 056305.

[137]

S. Rajendran, N.K. Thangavel, S. Alkatie, Y. Ding, and L.M.R. Arava, Y, Gd, and Pr tri-doped perovskite-type proton conducting electrolytes with improved sinterability and chemical stability, J. Alloys Compd., 870(2021), art. No. 159431.

[138]

F. He, Q.N. Gao, Z.Q. Liu, M.T. Yang, R. Ran, G.M. Yang, W. Wang, W. Zhou, and Z.P. Shao, A new Pd doped proton conducting perovskite oxide with multiple functionalities for efficient and stable power generation from ammonia at reduced temperatures, Adv. Energy Mater., 11(2021), No. 19, art. No. 2003916.

[139]

C.S. Tu, R.R. Chien, V.H. Schmidt, S.C. Lee, C.C. Huang, and C.L. Tsai, Thermal stability of Ba(Zr0.8−xCexY0.2)O2.9 ceramics in carbon dioxide, J. Appl. Phys., 105(2009), No. 10, art. No. 103504.

[140]

Babilo P, Haile SM. Enhanced sintering of yttrium-doped barium zirconate by addition of ZnO. J. Am. Ceram. Soc., 2005, 88(9): 2362.

[141]

Tao S W, Irvine JTS. A stable, easily sintered proton-conducting oxide electrolyte for moderate-temperature fuel cells and electrolyzers. Adv. Mater., 2006, 18(12): 1581.

[142]

Fabbri E, Bi L, Tanaka H, Pergolesi D, Traversa E. Chemically stable Pr and Y co-doped Barium zirconate electrolytes with high proton conductivity for intermediate-temperature solid oxide fuel cells. Adv. Funct. Mater., 2011, 21(1): 158.

[143]

Sun WP, Zhu ZW, Shi Z, Liu W. Chemically stable and easily sintered high-temperature proton conductor BaZr0.8In0.2O3−δ for solid oxide fuel cells. J. Power Sources, 2013, 229, 95.

[144]

Sawant P, Varma S, Wani BN, Bharadwaj SR. Synthesis, stability and conductivity of BaCe0.8−xZrxY0.2O3−δ as electrolyte for proton conducting SOFC. Int. J. Hydrogen Energy, 2012, 37(4): 3848.

[145]

Zhong ZM. Stability and conductivity study of the BaCe0.9−xZrxY0.1O2.95 systems. Solid State Ionics, 2007, 178(3–4): 213.

[146]

Ryu KH, Haile SM. Chemical stability and proton conductivity of doped BaCeO3 BaZrO3 solid solutions. Solid State Ionics, 1999, 125(1–4): 355.

[147]

Medvedev DA, Gorbova EV, Demin AK, Antonov BD. Structure and electric properties of BaCe0.77−xZrxGd0.2 Cu0.03O3−δ. Russ. J. Electrochem., 2011, 47(12): 1404.

[148]

Zhan SJ, Zhu XF, Wang WP, Yang WS. Stability and transport conductivity of perovskite type BaZrxCe0.8−xNd0.2O3−δ. Adv. Mater. Res., 2012, 554–556, 404.

[149]

Chen FL, Sørensen OT, Meng GY, Peng DK. Chemical stability study of BaCe0.9Nd0.1O3−α high-temperature proton-conducting ceramic. J. Mater. Chem., 1997, 7(3): 481.

[150]

H. Matsumoto, Y. Kawasaki, N. Ito, M. Enoki, and T. Ishihara, Relation between electrical conductivity and chemical stability of BaCeO3-based proton conductors with different trivalent dopants, Electrochem. Solid-State Lett., 10(2007), No. 4, art. No. B77.

[151]

Fu YP, Weng CS. Effect of rare-earth ions doped in BaCeO3 on chemical stability, mechanical properties, and conductivity properties. Ceram. Int., 2014, 40(7): 10793.

[152]

Reddy GS, Bauri R. Y and In-doped BaCeO3-BaZrO3 solid solutions: Chemically stable and easily sinterable proton conducting oxides. J. Alloys Compd., 2016, 688, 1039.

[153]

Bhide SV, Virkar AV. Stability of BaCeO3-based proton conductors in water-containing atmospheres. J. Electrochem. Soc., 1999, 146(6): 2038.

[154]

Rajendran S, Thangavel NK, Ding HP, Ding Y, Ding D, Reddy Arava LM. Tri-doped BaCeO3-BaZrO3 as a chemically stable electrolyte with high proton-conductivity for intermediate temperature solid oxide electrolysis cells (SOECs). ACS Appl. Mater. Interfaces, 2020, 12(34): 38275.

[155]

Allred AL. Electronegativity values from thermochemical data. J. Inorg. Nucl. Chem., 1961, 17(3–4): 215.

[156]

Radojković A, Žunić M, Savić SM, Branković G, Brankovic Z. Enhanced stability in CO2 of Ta doped BaCe0.9Y0.1O3−δ electrolyte for intermediate temperature SOFCs. Ceram. Int., 2013, 39(3): 2631.

[157]

Bi L, Zhang SQ, Fang SM, Tao ZT, Peng RR, Liu W. A novel anode supported BaCe0.7Ta0.1Y0.2O3−δ electrolyte membrane for proton-conducting solid oxide fuel cell. Electrochem. Commun., 2008, 10(10): 1598.

[158]

Dang JJ, Zhu ZW, Qian J, Liu W. A stable BaCe0.7Ta0.1In0.2O3−δ electrolyte membrane for proton-conducting solid oxide fuel cells. Ceram. Int., 2013, 39(4): 4287.

[159]

Zhang ZZ, Chen LH, Li QH, Song TF, Su JR, Cai B, He H. High performance In, Ta and Y-doped BaCeO3 electrolyte membrane for proton-conducting solid oxide fuel cells. Solid State Ionics, 2018, 323, 25.

[160]

Zvonareva IA, Tarutina LR, Vdovin GK, Lyagaeva JG, Akhmadeev AR, Medvedev DA. Heavily Sn-doped Barium cerates BaCe0.8−xSnxYb0.2O3−δ: Correlations between composition and ionic transport. Ceram. Int., 2021, 47(18): 26391.

[161]

Shirpour M, Merkle R, Lin CT, Maier J. Nonlinear electrical grain boundary properties in proton conducting Y-BaZrO3 supporting the space charge depletion model. Phys. Chem. Chem. Phys., 2012, 14(2): 730.

[162]

Shirpour M, Merkle R, Maier J. Space charge depletion in grain boundaries of BaZrO3 proton conductors. Solid State Ionics, 2012, 225, 304.

[163]

Lindman A, Helgee EE, Wahnström G. Comparison of space-charge formation at grain boundaries in proton-conducting BaZrO3 and BaCeO3. Chem. Mater., 2017, 29(18): 7931.

[164]

Shirpour M, Rahmati B, Sigle W, van Aken PA, Merkle R, Maier J. Dopant segregation and space charge effects in proton-conducting BaZrO3 perovskites. J. Phys. Chem. C, 2012, 116(3): 2453.

[165]

Vollman M, Waser R. Grain boundary defect chemistry of acceptor-doped titanates: Space charge layer width. J. Am. Ceram. Soc., 1994, 77(1): 235.

[166]

Medvedev D, Murashkina A, Pikalova E, Demin A, Podias A, Tsiakaras P. BaCeO3: Materials development, properties and application. Prog. Mater. Sci., 2014, 60, 72.

[167]

Bi L, Traversa E. Synthesis strategies for improving the performance of doped-BaZrO3 materials in solid oxide fuel cell applications. J. Mater. Res., 2014, 29(1): 1.

[168]

F.J.A. Loureiro, N. Nasani, G.S. Reddy, N.R. Munirathnam, and D.P. Fagg, A review on sintering technology of proton conducting BaCeO3-BaZrO3 perovskite oxide materials for Protonic Ceramic Fuel Cells, J. Power Sources, 438(2019), art. No. 226991.

[169]

Han DL, Hatada N, Uda T. Chemical expansion of yttrium-doped Barium zirconate and correlation with proton concentration and conductivity. J. Am. Ceram. Soc., 2016, 99(11): 3745.

[170]

Ito N, Matsumoto H, Kawasaki Y, Okada S, Ishihara T. Introduction of in or Ga as second dopant to BaZr0.9Y0.1O3−δ to achieve better sinterability. Solid State Ionics, 2008, 179(9–10): 324.

[171]

Ahmed I, Eriksson SG, Ahlberg E, Knee CS, Götlind H, Johansson LG, Karlsson M, Matic A, Börjesson L. Structural study and proton conductivity in Yb-doped BaZrO3. Solid State Ionics, 2007, 178(7–10): 515.

[172]

D.E. Yun, J. Kim, S.J. Kim, J.H. Lee, J.N. Kim, H. Yoon, J. Yu, M. Kwak, H. Yoon, Y. Cho, and C.Y. Yoo, Structural and electrochemical properties of dense yttria-doped Barium zirconate prepared by solid-state reactive sintering, Energies, 11(2018), No. 11, art. No. 3083.

[173]

Gorbova E, Maragou V, Medvedev D, Demin A, Tsiakaras P. Investigation of the protonic conduction in Sm doped BaCeO3. J. Power Sources, 2008, 181(2): 207.

[174]

Afif A, Radenahmad N, Zaini J, Abdalla AM, Rahman SMH, Eriksson S, Azad AK. Enhancement of proton conductivity through Yb and Zn doping in BaCe0.5Zr0.35Y0.15O3−δ electrolyte for IT-SOFCs. Process. Appl. Ceram., 2018, 12(2): 180.

[175]

Imashuku S, Uda T, Nose Y, Awakura Y. Fabrication and electrical characterization of 15% yttrium-doped barium zirconate—nitrate freeze drying method combined with vacuum heating. J. Alloys Compd., 2011, 509(9): 3872.

[176]

Han DL, Uemura S, Hiraiwa C, Majima M, Uda T. Detrimental effect of sintering additives on conducting ceramics: Yttrium-doped Barium zirconate. ChemSusChem, 2018, 11(23): 4102.

[177]

Peng C, Melnik J, Luo JL, Sanger AR, Chuang KT. BaZr0.8Y0.2O3−δ electrolyte with and without ZnO sintering aid: Preparation and characterization. Solid State Ionics, 2010, 181(29–30): 1372.

[178]

Peng C, Melnik J, Li JX, Luo JL, Sanger AR, Chuang KT. ZnO-doped BaZr0.85Y0.15O3−δ proton-coriductigg electrolytes: Characterization and fabrication of thin films. J. Power Sources, 2009, 190(2): 447.

[179]

Tao SW, Irvine JTS. Conductivity studies of dense yttrium-doped BaZrO3 sintered at 1325°C. J. Solid State Chem., 2007, 180(12): 3493.

[180]

Sun ZQ, Fabbri E, Bi L, Traversa E. Electrochemical properties and intermediate-temperature fuel cell performance of dense yttrium-doped Barium zirconate with calcium addition. J. Am. Ceram. Soc., 2012, 95(2): 627.

[181]

Sun ZQ, Fabbri E, Bi L, Traversa E. Lowering grain boundary resistance of BaZr0.8Y0.2O3−δ with LiNO3 sintering-aid improves proton conductivity for fuel cell operation. Phys. Chem. Chem. Phys., 2011, 13(17): 7692.

[182]

Yamazaki Y, Hernandez-Sanchez R, Haile SM. High total proton conductivity in large-grained yttrium-doped Barium zirconate. Chem. Mater., 2009, 21(13): 2755.

[183]

Gao DY, Guo RS. Structural and electrochemical properties of yttrium-doped Barium zirconate by addition of CuO. J. Alloys Compd., 2010, 493(1–2): 288.

[184]

J. Li, C. Wang, X.F. Wang, and L. Bi, Sintering aids for proton-conducting oxides — A double-edged sword? A mini review, Electrochem. Commun., 112(2020), art. No. 106672.

[185]

Hossain MK, Biswas MC, Chanda RK, Rubel MHK, Khan MI, Hashizume K. A review on experimental and theoretical studies of perovskite barium zirconate proton conductors. Emergent Mater., 2021, 4(4): 999.

[186]

Y. Li, S.J. Wang, and P.C. Su, Proton-conducting micro-solid oxide fuel cells with improved cathode reactions by a nanoscale thin film gadolinium-doped ceria interlayer, Sci. Reports, 6(2016), art. No. 22369.

[187]

L. Bi, S.P. Shafi, E.H. Da’as, and E. Traversa, Tailoring the cathode-electrolyte interface with nanoparticles for boosting the solid oxide fuel cell performance of chemically stable proton-conducting electrolytes, Small, 14(2018), No. 32, art. No. 1801231.

[188]

Wang N, Toriumi H, Sato Y, Tang CM, Nakamura T, Amezawa K, Kitano S, Habazaki H, Aoki Y. La0.8Sr0.2Co1−xNixO3−δ as the efficient triple conductor air electrode for protonic ceramic cells. ACS Appl. Energy Mater., 2021, 4(1): 554.

[189]

Choi S, Davenport TC, Haile SM. Protonic ceramic electrochemical cells for hydrogen production and electricity generation: Exceptional reversibility, stability, and demonstrated faradaic efficiency. Energy Environ. Sci., 2019, 12(1): 206.

[190]

Wei KW, Li N, Wu YJ, Song WC, Wang XX, Guo LT, Khan M, Wang SR, Zhou FB, Ling YH. Characterization and optimization of highly active and Ba-deficient BaCo0.4Fe0.4Zr0.1Y0.1O3−δ-based cathode materials for proteinic ceramics fuel cells. Ceram. Int., 2019, 45(15): 18583.

[191]

Duan CC, Tong JH, Shang M, Nikodemski S, Sanders M, Ricote S, Almansoori A, O’Hayre R. Readily processed protonic ceramic fuel cells with high performance at low temperatures. Science, 2015, 349(6254): 1321.

[192]

Y.C. Zhou, E.Z. Liu, Y. Chen, Y.C. Liu, L. Zhang, W.L. Zhang, Z.Y. Luo, N. Kane, B.T. Zhao, L.K. Soule, Y.H. Niu, Y. Ding, H.P. Ding, D. Ding, and M.L. Liu, An active and robust air electrode for reversible protonic ceramic electrochemical cells, ACS Energy Lett., (2021), p. 1511.

[193]

L.R. Tarutina, G.K. Vdovin, J.G. Lyagaeva, and D.A. Medvedev, BaCe0.7−xZr0.2Y0.1FexO3−δ derived from proton-conducting electrolytes: A way of designing chemically compatible cathodes for solid oxide fuel cells, J. Alloys Compd., 831(2020), art. No. 154895.

[194]

Wang Z, Lv PF, Yang L, Guan R, Jiang JD, Jin FJ, He TM. Ba0.95La0.05Fe0.8Zn0.2O3−δ cobalt-free perovskite as a triple-conducting cathode for proton-conducting solid oxide fuel cells. Ceram. Int., 2020, 46(11): 18216.

[195]

Liu JJ, Ding JW, Miao LN, Gong Z, Li K, Liu W. High performance Ba0.95Ca0.05Fe0.9−xSnxY0.1O3−δ-SDC as cobalt-free cathode for intermediate-temperature proton-conducting solid oxide fuel cells with BaZr0.1Ce0.7Y0.2O3−δ electrolyte. J. Alloys Compd., 2019, 786, 163.

[196]

Saqib M, Choi IG, Bae H, Park K, Shin JS, Kim YD, Lee JI, Jo M, Kim YC, Lee KS, Song SJ, Wachsman ED, Park JY. Transition from perovskite to misfit-layered structure materials: A highly oxygen deficient and stable oxygen electrode catalyst. Energy Environ. Sci., 2021, 14(4): 2472.

[197]

X. Zhou, N.J. Hou, T. Gan, L.J. Fan, Y.X. Zhang, J.Y. Li, G. Gao, Y.C. Zhao, and Y.D. Li, Enhanced oxygen reduction reaction activity of BaCe0.2Fe0.8O3−δ cathode for proton-conducting solid oxide fuel cells via Pr-doping, J. Power Sources, 495(2021), art. No. 229776.

[198]

Z.Y. Zhao, J. Cui, M.D. Zou, S.L. Mu, H. Huang, Y.Q. Meng, K. He, K.S. Brinkman, and J.H. Tong, Novel twin-perovskite nanocomposite of Ba-Ce-Fe-Co-O as a promising triple conducting cathode material for protonic ceramic fuel cells, J. Power Sources, 450(2020), art. No. 227609.

[199]

W.Y. Li, B. Guan, T. Yang, Z.Q. Li, W.Y. Shi, H.C. Tian, L. Ma, T.L. Kalapos, and X.B. Liu, Layer-structured triple-conducting electrocatalyst for water-splitting in protonic ceramic electrolysis cells: Conductivities vs. activity, J. Power Sources, 495(2021), art. No. 229764.

[200]

R. Murphy, Y.C. Zhou, L. Zhang, L.K. Soule, W.L. Zhang, Y. Chen, and M.L. Liu, A new family of proton-conducting electrolytes for reversible solid oxide cells: BaHfxCe0.8−x Y0.1Yb0.1O3−δ, Adv. Funct. Mater., 30(2020), No. 35, art. No. 2002265.

[201]

Leonard K, Druce J, Thoreton V, Kilner JA, Matsumoto H. Exploring mixed proton/electron conducting air electrode materials in protonic electrolysis cell. Solid State Ionics, 2018, 319, 218.

AI Summary AI Mindmap
PDF

118

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/