PDF
Abstract
The 3d transition-metal nickel (Ni)-based cathodes have long been widely used in rechargeable batteries for over 100 years, from Ni-based alkaline rechargeable batteries, such as nickel-cadmium (Ni-Cd) and nickel-metal hydride (Ni-MH) batteries, to the Ni-rich cathode featured in lithium-ion batteries (LIBs). Ni-based alkaline batteries were first invented in the 1900s, and the well-developed Ni-MH batteries were used on a large scale in Toyota Prius vehicles in the mid-1990s. Around the same time, however, Sony Corporation commercialized the first LIBs in camcorders. After temporally fading as LiCoO2 dominated the cathode in LIBs, nickel oxide-based cathodes eventually found their way back to the mainstreaming battery industry. The uniqueness of Ni in batteries is that it helps to deliver high energy density and great storage capacity at a low cost. This review mainly provides a comprehensive overview of the key role of Ni-based cathodes in rechargeable batteries. After presenting the physical and chemical properties of the 3d transition-metal Ni, which make it an optimal cationic redox center in the cathode of batteries, we introduce the structure, reaction mechanism, and modification of nickel hydroxide electrode in Ni-Cd and Ni-MH rechargeable batteries. We then move on to the Ni-based layered oxide cathode in LIBs, with a focus on the structure, issues, and challenges of layered oxides, LiNiO2, and LiNi1−x−yCo xMn yO2. The role of Ni in the electrochemical performance and thermal stability of the Ni-rich cathode is highlighted. By bridging the “old” Ni-based batteries and the “modern” Ni-rich cathode in the LIBs, this review is committed to providing insights into the Ni-based electrochemistry and material design, which have been under research and development for over 100 years. This overview would shed new light on the development of advanced Ni-containing batteries with high energy density and long cycle life.
Keywords
nickel-based alkaline batteries
/
nickel hydroxide electrodes
/
lithium-ion battery
/
Ni-rich layered oxide cathodes
Cite this article
Download citation ▾
Lifan Wang, Jingyue Wang, Leiying Wang, Mingjun Zhang, Rui Wang, Chun Zhan.
A critical review on nickel-based cathodes in rechargeable batteries.
International Journal of Minerals, Metallurgy, and Materials, 2022, 29(5): 925-941 DOI:10.1007/s12613-022-2446-z
| [1] |
Halpert G. Past developments and the future of nickel electrode cell technology. J. Power Sources, 1984, 12(3–4): 177.
|
| [2] |
Chakkaravarthy C, Periasamy P, Jegannathan S, Vasu KI. The nickel/iron battery. J. Power Sources, 1991, 35(1): 21.
|
| [3] |
Technical Marketing Staff of Gates Energy Products Inc., Rechargeable Batteries Applications Handbook, Newnes, 1998. p. 283
|
| [4] |
Melhem Z. Electricity Transmission, Distribution and Storage systems, 2013, Cambrige, Woodhead Publishing
|
| [5] |
Brodd RJ. Nickel-based battery systems. Batteries for Sustainability, 2013, New York, Springer, 423.
|
| [6] |
Armand M, Tarascon JM. Building better batteries. Nature, 2008, 451(7179): 652.
|
| [7] |
Whittingham MS. Lithium batteries and cathode materials. Chem. Rev., 2004, 104(10): 4271.
|
| [8] |
Dahn JR, Sacken UV, Michal CA. Structure and electrochemistry of Li1±yNiO2 and a new Li2NiO2 phase with the Ni(OH)2 structure. Solid State Ionics, 1990, 44(1–2): 87.
|
| [9] |
Dahn JR, Sacken UV, Juzkow MW, Al-Janaby H. Rechargeable LiNiO2/carbon cells. J. Electrochem. Soc., 1991, 138(8): 2207.
|
| [10] |
Ohzuku T, Ueda A, Nagayama M, Iwakoshi Y, Komori H. Comparative study of LiCoO2, LiNi12Co12O2 ndd LiNiO2 for 4 volt secondary lithium cells. Electrochim. Acta, 1993, 38(9): 1159.
|
| [11] |
Ohzuku T, Ueda A, Nagayama M. Electrochemistry and structural chemistry of LiNiO2 (R3m) for 4 volt secondary lithium cells. J. Electrochem. Soc., 1993, 140(7): 1862.
|
| [12] |
Ohzuku T, Makimura Y. Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2for lithium-ion batteries. Chem. Lett., 2001, 30(7): 642.
|
| [13] |
Liu ZL, Yu AS, Lee JY. Synthesis and characterization of LiNi1−x−yCoxMnyO2 as the cathode materials of secondary lithium batteries. J. Power Sources, 1999, 81–82, 416.
|
| [14] |
Li WD, Erickson EM, Manthiram A. High-nickel layered oxide cathodes for lithium-based automotive batteries. Nat. Energy, 2020, 5(1): 26.
|
| [15] |
Bianchini M, Roca-Ayats M, Hartmann P, Brezesinski T, Janek J. There and back again—The journey of LiNiO2 as a cathode active material. Angew. Chem. Int. Ed., 2019, 58(31): 10434.
|
| [16] |
Nickel Institute, About Nickel and Its Applications, Nickel Institute [2022]. https://nickelinstitute.org/about-nickel-and-its-applications/#04-first-use-nickel
|
| [17] |
Zhu YZ, He XF, Mo YF. First principles study on electrochemical and chemical stability of solid electrolyte-electrode interfaces in all-solid-state Li-ion batteries. J. Mater. Chem A, 2016, 4(9): 3253.
|
| [18] |
X.W. Zhan, M.M. Li, J.M. Weller, V.L. Sprenkle, and G.S. Li, Recent progress in cathode materials for sodium-metal halide batteries, Materials, 14(2021), No. 12, art. No. 3260.
|
| [19] |
Housecroft C, Sharpe AG. Inorganic Chemistry, 2012, 4th Ed. Harlow, Pearson Education Limited
|
| [20] |
Liang CP, Longo RC, Kong FT, Zhang CX, Nie YF, Zheng YP, Kim JS, Jeon S, Choi S, Cho K. Obstacles toward unity efficiency of LiNi1−2xCoJMnxO2 (x = 0–1/3) (NCM) cathode materials: Insights from ab initio calculations. J. Power Sources, 2017, 340, 217.
|
| [21] |
Kalyani P, Kalaiselvi N. Various aspects of LiNiO2 chemistry: A review. Sci. Technol. Adv. Mater, 2005, 6(6): 689.
|
| [22] |
Deng ZQ, Manthiram A. Influence of cationic substitutions on the oxygen loss and reversible capacity of lithium-rich layered oxide cathodes. J. Phys. Chem. C, 2011, 115(14): 7097.
|
| [23] |
Skowronski JM, Osinska M. The determination of chemical precipitation conditions of nickel hydroxide from solutions after leaching spent Ni-Cd batteries. Przem. Chem., 2009, 88(7): 826
|
| [24] |
Li LL, Chen L, Wen YH, Xiong TF, Xu H, Zhang WF, Cao GP, Yang YS, Mai LQ, Zhang H. Phenazine anodes for ultralongcycle-life aqueous rechargeable batteries. J. Mater. Chem. A, 2020, 8(48): 26013.
|
| [25] |
Shukla AK, Venugopalan S, Hariprakash B. Nickel-based rechargeable batteries. J. Power Sources, 2001, 100(1–2): 125.
|
| [26] |
Bode H, Dehmelt K, Witte J. Zur kenntnis der nickelhydroxidelektrode—I.Über das nickel(II)-hydroxidhydrat. Electrochim. Acta, 1966, 11(8): 1079.
|
| [27] |
Sac-Epée N, Palacín MR, Beaudoin B, Delahaye-Vidal A, Jamin T, Chabre Y, Tarascon JM. On the origin of the second low-voltage plateau in secondary alkaline batteries with nickel hydroxide positive electrodes. J. Electrochem. Soc., 1997, 144(11): 3896.
|
| [28] |
B. Liu, X.R. Liu, X.Y. Fan, J. Ding, W.B. Hu, and C. Zhong, 120 Years of nickel-based cathodes for alkaline batteries, J. Alloys Compd., 834(2020), art. No. 155185.
|
| [29] |
Diaz-Morales O, Ferrus-Suspedra D, Koper MTM. The importance of nickel oxyhydroxide deprotonation on its activity towards electrochemical water oxidation. Chem. Sci., 2016, 7(4): 2639.
|
| [30] |
Yang CC. Synthesis and characterization of active materials of Ni(OH)2 powders. Int. J. Hydrog. Energy, 2002, 27(10): 1071.
|
| [31] |
Mansour AN, Melendres CA, Pankuch M, Brizzolara RA. X-ray absorption fine structure spectra and the oxidation state of nickel in some of its oxycompounds. J. Electrochem. Soc., 1994, 141(6): L69.
|
| [32] |
Cheek GT, O’Grady WE. Redox behavior of the nickel oxide electrode system: Quartz crystal microbalance studies. J. Electroanal. Chem., 1997, 421(1–2): 173.
|
| [33] |
Oshitani M, Yufu H, Takashima K, Tsuji S, Matsumaru Y. Development of a pasted nickel electrode with high active material utilization. J. Electrochem. Soc, 1989, 136(6): 1590.
|
| [34] |
Anders S, Anders A, Brown I, Kong F, McLarnon F. Surface modification of nickel battery electrodes by cobalt plasma immersion ion implantation and deposition. Surf. Coat. Technol., 1996, 85(1–2): 75.
|
| [35] |
He XM, Pu WH, Cheng HW, Jiang CY, Wan CR. Granulation of nano-scale Ni(OH)2 cathode materials for high power Ni-MH batteries. Energy Convers. Manag, 2006, 47(13–14): 1879.
|
| [36] |
Cheng FY, Chen J, Shen PW. Y(OH)3-coated Ni(OH)2 tube as the positive-electrode materials of alkaline rechargeable batteries. J. Power Sources, 2005, 150, 255.
|
| [37] |
Kamath PV, Dixit M, Indira L, Shukla AK, Kumar VG, Munichandraiah N. Stabilized a-Ni (OH)2 as electrode material for alkaline secondary cells. J. Electrochem. Soc., 1994, 141(11): 2956.
|
| [38] |
Gong M, Li YG, Zhang HB, Zhang B, Zhou W, Feng J, Wang HL, Liang YY, Fan ZJ, Liu J, Dai HJ. Ultra-fast high-capacity NiZn battery with NiAlCo-layered double hydroxide. Energy Environ. Sci., 2014, 7(6): 2025.
|
| [39] |
Kimmel SW, Hopkins BJ, Chervin CN, Skeele NL, Ko JS, DeBlock RH, Long JW, Parker JF, Hudak BM, Stroud RM, Rolison DR, Rhodes CP. Capacity and phase stability of metal-substituted α-Ni(OH)2 nanosheets in aqueous Ni-Zn batteries. Mater. Adv., 2021, 2(9): 3060.
|
| [40] |
Chen SZ, Mao M, Liu X, Hong SY, Lu ZG, Sang SB, Liu KY, Liu HT. A high-rate cathode material hybridized by in-site grown Ni-Fe layered double hydroxides and carbon black nanoparticles. J. Mater. Chem. A, 2016, 4(13): 4877.
|
| [41] |
Jayashree RS, Vishnu Kamath P. Layered double hydroxides of Ni with Cr and Mn as candidate electrode materials for alkaline secondary cells. J. Power Sources, 2002, 107(1): 120.
|
| [42] |
Li YW, Yao JH, Liu CJ, Zhao WM, Deng WX, Zhong SK. Effect of interlayer anions on the electrochemical performance of Al-substituted a-type nickel hydroxide electrodes. Int. J. Hydrog. Energy, 2010, 35(6): 2539.
|
| [43] |
Lei LX, Hu M, Gao XR, Sun YM. The effect of the interlayer anions on the electrochemical performance of layered double hydroxide electrode materials. Electrochim. Acta, 2008, 54(2): 671.
|
| [44] |
Goodenough JB, Kim Y. Challenges for rechargeable Li batteries. Chem. Mater., 2010, 22(3): 587.
|
| [45] |
Dyer LD, B.S.B.Jr., Smith GP. Alkali metal-nickel oxides of the type MNiO2. J. Am. Chem. Soc, 1954, 76(6): 1499.
|
| [46] |
Qian RC, Liu YL, Cheng T, Li PP, Chen RM, Lyu YC, Guo BK. Enhanced surface chemical and structural stability of Ni-rich cathode materials by synchronous lithium-ion conductor coating for lithium-ion batteries. ACS Appl. Mater. Interfaces, 2020, 12(12): 13813.
|
| [47] |
C. Hernández-Fontes and H. Pfeiffer, Unraveling the CO and CO2 reactivity on Li2MnO3: Sorption and catalytic analyses, Chem. Eng. J., 428(2022), art. No. 131998.
|
| [48] |
Padhi AK, Nanjundaswamy KS, Goodenough JB. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc, 1997, 144(4): 1188.
|
| [49] |
Liu W, Oh P, Liu XE, Lee MJ, Cho W, Chae S, Kim Y, Cho J. Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. Angew. Chem. Int. Ed, 2015, 54(15): 4440.
|
| [50] |
Kalaiselvi N, Periasamy P, Thirunakaran R, Ramesh Babu B, Prem Kumar T, Renganathan NG, Raghavan M, Muniyandi N. Iron doped lithium cobalt oxides as lithium intercalating cathode materials. Ionics, 2001, 7(4–6): 451.
|
| [51] |
Manthiram A, Song BH, Li WD. A perspective on nickel-rich layered oxide cathodes for lithium-ion batteries. Energy Storage Mater., 2017, 6, 125.
|
| [52] |
Goodenough JB, Wickham DG, Croft WJ. Some magnetic and crystallographic properties of the system Li+ xNi++ 1−2xni+++ xO. J. Phys. Chem. Solids, 1958, 5(1–2): 107.
|
| [53] |
Armstrong AR, Bruce PG. Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries. Nature, 1996, 381(6582): 499.
|
| [54] |
Aurbach D. Electrode-solution interactions in Li-ion batteries: A short summary and new insights. J. Power Sources, 2003, 119–121, 497.
|
| [55] |
Kim Y, Seong WM, Manthiram A. Cobalt-free, highnickel layered oxide cathodes for lithium-ion batteries: Progress, challenges, and perspectives. Energy Storage Mater., 2021, 34, 250.
|
| [56] |
Ellis BL, Lee KT, Nazar LF. Positive electrode materials for Li-ion and Li-batteries. Chem. Mater., 2010, 22(3): 691.
|
| [57] |
Li C, Zhang HP, Fu LJ, Liu H, Wu YP, Rahm E, Holze R, Wu HQ. Cathode materials modified by surface coating for lithium ion batteries. Electrochim. Acta, 2006, 51(19): 3872.
|
| [58] |
C.C. Chang, J.Y. Kim, and P.N. Kumta, Implications of reaction mechanism and kinetics on the synthesis of stoichiometric LiNiO2, J. Electrochem. Soc., 149(2002), No. 3, art. No. A331.
|
| [59] |
Chang CC, Kumta PN. Mechanochemical synthesis of LiNiO2. Mater. Sci. Eng. B, 2005, 116(3): 341.
|
| [60] |
Chen ZL, Zou HM, Zhu XP, Zou J, Cao JF. First-principle investigation of Jahn-Teller distortion and topological analysis of chemical bonds in LiNiO2. J. Solid State Chem., 2011, 184(7): 1784.
|
| [61] |
M. Bonda, M. Holzapfel, S. de Brion, C. Darie, T. Fehér, P.J. Baker, T. Lancaster, S.J. Blundell, and F.L. Pratt, Publisher’s Note: Effect of magnesium doping on the orbital and magnetic order in LiNiO2, Phys. Rev. B, 78(2008), No. 10, art. No. 109903.
|
| [62] |
Cho E, Seo SW, Min K. Theoretical prediction of surface stability and morphology of LiNiO2 cathode for Li ion batteries. ACS Appl. Mater. Interfaces, 2017, 9(38): 33257.
|
| [63] |
Jun DW, Yoon CS, Kim UH, Sun YK. High-energy density core-shell structured LiNi0.95Co0.025Mn0.025 O2 cathode for lithium-ion batteries. Chem. Mater., 2017, 29(12): 5048.
|
| [64] |
Hirota K, Nakazawa Y, Ishikawa M. Magnetic properties of the S = 1/2 antiferromagnetic triangular lattice LiNiO2. J. Phys.: Condens. Matter, 1991, 3(25): 4721
|
| [65] |
Jones CDW, Rossen E, Dahn JR. Structure and electrochemistry of LixCryCo1−yO2. Solid State Ionics, 1994, 68(1–2): 65.
|
| [66] |
Yoon CS, Jun DW, Myung ST, Sun YK. Structural stability of LiNiO2 cycled above 4.2 V. ACS Energy Lett., 2017, 2(5): 1150.
|
| [67] |
Kawaji H, Oka T, Tojo T, Atake T, Hirano A, Kanno R. Low-temperature heat capacity of layer structure lithium nickel oxide. Solid State Ionics, 2002, 152–153, 195.
|
| [68] |
Kellerman D G. Magnetic properties of complex oxides LiMO2 (M = Sc-Ni) with different types of cationic ordering. Russ. Chem. Rev., 2001, 70(9): 777.
|
| [69] |
Delmas C, Ménétrier M, Croguennec L, Saadoune I, Rougier A, Pouillerie C, Prado G, Grüne M, Fournès L. An overview of the Li(Ni,M)O2 systems: Syntheses, structures and properties. Electrochim. Acta, 1999, 45(1–2): 243.
|
| [70] |
Xu HJ, Xiao WD, Wang Z, Hu JH, Shao GS. Self-consistent assessment of Li+ ion cathodes: Theory vs. experiments. J. Energy Chem., 2021, 59, 229.
|
| [71] |
Liu CD, Cao GQ, Wu ZH, Hu JH, Wang HY, Shao GS. Surficial structure retention mechanism for LiNi0.8Co0.15Al0.05O2 in a full gradient cathode. ACS Appl. Mater. Interfaces, 2019, 11(35): 31991.
|
| [72] |
S.F. Li, G.N. Qian, X.M. He, X.J. Huang, S.J. Lee, Z.S. Jiang, Y. Yang, W.N. Wang, D.C. Meng, C. Yu, J.S. Lee, Y.S. Chu, Z.F. Ma, P. Pianetta, J.S. Qiu, L.S. Li, K.J. Zhao, and Y.J. Liu, Thermal-healing of lattice defects for high-energy single-crystalline battery cathodes, Nat. Commun., 13(2022), No. 1, art. No. 704.
|
| [73] |
Lee HB, Hoang TD, Byeon YS, Jung H, Moon J, Park MS. Surface stabilization of Ni-rich layered cathode materials via surface engineering with LiTaO3 for lithium-ion batteries. ACS Appl. Mater. Interfaces, 2022, 14(2): 2731.
|
| [74] |
S.Y. Yin, W.T. Deng, J. Chen, X. Gao, G.Q. Zou, H.S. Hou, and X.B. Ji, Fundamental and solutions of microcrack in Ni-rich layered oxide cathode materials of lithium-ion batteries, Nano Energy, 83(2021), art. No. 105854.
|
| [75] |
H.H. Sun, U.H. Kim, J.H. Park, S.W. Park, D.H. Seo, A. Heller, C.B. Mullins, C.S. Yoon, and Y.K. Sun, Transition metal-doped Ni-rich layered cathode materials for durable Li-ion batteries, Nat. Commun., 12(2021), art. No. 6552.
|
| [76] |
Zhao ZK, Xie HL, Wen ZY, Liu L, Wu BR, Chen S, Mu DB, Xie CX. Tuning Li3PO4 modification on the electrochemical performance of nickel-rich LiNi0.6Co0.2Mn0.2O2. Int. J. Miner. Metall. Mater, 2021, 28(9): 1488.
|
| [77] |
Wang HY, Cheng X, Li XF, Pan JM, Hu JH. Coupling effect of the conductivities of Li ions and electrons by introducing LLTO@C fibers in the LiNi0.8Co0.15Al0.05O2 cathode. Int. J. Miner. Metall. Mater., 2021, 28(2): 305.
|
| [78] |
Ngala JK, Chernova NA, Ma MM, Mamak M, Zavalij PY, Whittingham MS. The synthesis, characterization and electrochemical behavior of the layered LiNi0.4Mn0.4Co0.2O2 compound. J. Mater. Chem, 2004, 14(2): 214.
|
| [79] |
Lee KS, Myung ST, Amine K, Yashiro H, Sun YK. Structural and electrochemical properties of layered Li[Ni1−2xCoxMnx]O2 (x = 0.1–0.3) positive electrode materials for Li-ion batteries. J. Electrochem. Soc, 2007, 154(10): A971.
|
| [80] |
Chen CH, Liu J, Stoll ME, Henriksen G, Vissers DR, Amine K. Aluminum-doped lithium nickel cobalt oxide electrodes for high-power lithium-ion batteries. J. Power Sources, 2004, 128(2): 278.
|
| [81] |
Kang K, Meng YS, Breger J, Grey CP, Ceder G. Electrodes with high power and high capacity for rechargeable lithium batteries. Science, 2006, 311(5763): 977.
|
| [82] |
Xu J, Lin F, Doeff MM, Tong W. A review of Ni-based layered oxides for rechargeable Li-ion batteries. J. Mater. Chem. A, 2017, 5(3): 874.
|
| [83] |
Guilmard M, Croguennec L, Denux D, Delmas C. Thermal stability of lithium nickel oxide derivatives. Part I. LixNi1.02O2 and LixNi0.89Al0.16O2 (x = 0.50 and 0.30). Chem. Mater., 2003, 15(23): 4476.
|
| [84] |
Chakraborty A, Kunnikuruvan S, Kumar S, Markovsky B, Aurbach D, Dixit M, Major DT. Layered cathode materials for lithium-ion batteries: Review of computational studies on LiNi1−x−yCoxMnyO2 and LiNi1−x−yCoxAlyO2. Chem. Mater., 2020, 32(3): 915.
|
| [85] |
Guilmard M, Croguennec L, Delmas C. Thermal stability of lithium nickel oxide derivatives. Part II. LixNi0.70Co0.15Al0.15O2 and LixNi0.90Mn0.10O2 (x = 0.50 and 0.30). Comparison with LixNi1.02O2 and LixNi0.89A10.16O2. Chem. Mater., 2003, 15(23): 4484.
|
| [86] |
Trease NM, Seymour ID, Radin MD, Liu HD, Liu H, Hy S, Chernova N, Parikh P, Devaraj A, Wiaderek KM, Chupas PJ, Chapman KW, Whittingham MS, Meng YS, Van der Van A, Grey CP. Identifying the distribution of Al3+ in LiNi0.8Co0.15Al0.05O2. Chem. Mater., 2016, 28(22): 8170.
|
| [87] |
Leifer N, Srur-Lavi O, Matlahov I, Markovsky B, Aurbach D, Goobes G. LiNi0.8Co0.15Al0.05O2 cathode material: New insights via 7Li and 27Al magic-angle spinning NMR spectroscopy. Chem. Mater., 2016, 28(21): 7594.
|
| [88] |
Ohzuku T, Yanagawa T, Kouguchi M, Ueda A. Innovative insertion material of LiAl1/4Ni3/4O2 (R-m) for lithium-ion (shuttlecock) batteries. J. Power Sources, 1997, 68(1): 131.
|
| [89] |
Edström K, Gustafsson T, Thomas JO. The cathode-electrolyte interface in the Li-ion battery. Electrochim. Acta, 2004, 50(2–3): 397.
|
| [90] |
Huang Y, Jin FM, Chen FJ, Chen L. Improved cycle stability and high-rate capability of Li3VO4-coated Li[Ni05Co02Mn03]O2 cathode material under different voltages. J. Power Sources, 2014, 256, 1.
|
| [91] |
Guo X, Greenbaum S, Ronci F, Scrosati B. X-ray diffraction and 7Li nuclear magnetic resonance studies of iron- and cobalt-substituted LiNiO2 prepared from inorganic transition metal nitrates. Solid State Ionics, 2004, 168(1–2): 37.
|
| [92] |
Huang XK, Attia A, Yue HJ, Lv DP, Yang Y. Preparation and electrochemical properties of Co3O4-coated layered manganese oxide by a novel coating method. J. Solid State Electrochem., 2009, 13(5): 697.
|
| [93] |
Guilmard M, Pouillerie C, Croguennec L, Delmas C. Structural and electrochemical properties of LiNi070Co015Al015O2. Solid State Ionics, 2003, 160(1–2): 39.
|
| [94] |
Hwang S, Chang W, Kim SM, Su D, Kim DH, Lee JY, Chung KY, Stach EA. Investigation of changes in the surface structure of LixNi0.8Co0.15Al0.05O2 cathode materials induced by the initial charge. Chem. Mater., 2014, 26(2): 1084.
|
| [95] |
Hwang S, Kim SM, Bak SM, Cho BW, Chung KY, Lee JY, Chang W, Stach EA. Investigating local degradation and thermal stability of charged nickel-based cathode materials through real-time electron microscopy. ACS Appl. Mater. Interfaces, 2014, 6(17): 15140.
|
| [96] |
Z.L. Tan, Y.J. Li, X.M. Xi, J.C. Yang, Y.L. Xu, Y.K. Xiong, S. Wang, S.W. Liu, and J.C. Zheng, Lattice engineering to alleviate microcrack of LiNi0.9Co0.05Mn0.05O2 cathode for optimization their Li+ storage functionalities, Electrochim. Acta, 401(2022), art. No. 139482.
|
| [97] |
He P, Yu HJ, Li D, Zhou HS. Layered lithium transition metal oxide cathodes towards high energy lithium-ion batteries. J. Mater. Chem., 2012, 22(9): 3680.
|
| [98] |
Sun YK, Lee DJ, Lee YJ, Chen ZH, Myung ST. Cobalt-free nickel rich layered oxide cathodes for lithium-ion batteries. ACS Appl. Mater. Interfaces, 2013, 5(21): 11434.
|
| [99] |
Li HY, Cormier M, Zhang N, Inglis J, Li J, Dahn JR. Is cobalt needed in Ni-rich positive electrode materials for lithium ion batteries?. J. Electrochem. Soc., 2019, 166(4): A429.
|
| [100] |
Rougier A, Gravereau P, Delmas C. Optimization of the composition of the Li1−zNi1+zO2 electrode materials: Structural, magnetic, and electrochemical studies. J. Electrochem. Soc., 1996, 143(4): 1168.
|
| [101] |
Zhang CF, Wan JJ, Li YX, Zheng SY, Zhou K, Wang DH, Wang DF, Hong CY, Gong ZL, Yang Y. Restraining the polarization increase of Ni-rich and low-Co cathodes upon cycling by Al-doping. J. Mater. Chem. A, 2020, 8(14): 6893.
|
| [102] |
Hong CY, Leng QY, Zhu JP, Zheng SY, He HJ, Li YX, Liu R, Wan JJ, Yang Y. Revealing the correlation between structural evolution and Li+ diffusion kinetics of nickel-rich cathode materials in Li-ion batteries. J. Mater. Chem, 2020, 8(17): 8540.
|
| [103] |
Li J, Harlow J, Stakheiko N, Zhang N, Paulsen J, Dahn J. Dependence of cell failure on cut-off voltage ranges and observation of kinetic hindrance in LiNi0.8Co0.15Al0.05O2. J. Electrochem. Soc., 2018, 165(11): A2682.
|
| [104] |
J.R. Croy, B.R. Long, and M. Balasubramanian, A path toward cobalt-free lithium-ion cathodes, J. Power Sources, 440(2019), art. No. 227113.
|
| [105] |
Cormier MME, Zhang N, Liu A, Li HY, Inglis J, Dahn JR. Impact of dopants (Al,Mg,Mn,Co) on the reactivity of LixNiO2 with the electrolyte of Li-ion batteries. J. Electrochem Soc., 2019, 166(13): A2826.
|
| [106] |
W.D. Li, S. Lee, and A. Manthiram, High-nickel NMA: A cobalt-free alternative to NMC and NCA cathodes for lithiumion batteries, Adv. Mater., 32(2020), No. 33, art. No. 2002718.
|
| [107] |
Yang XQ, McBreen J, Yoon WS, Grey CP. Crystal structure changes of LiMn0.5Ni0.5O2 cathode materials during charge and discharge studied by synchrotron based in situ XRD. Electrochem. Commun., 2002, 4(8): 649.
|
| [108] |
Zheng JX, Liu TC, Hu ZX, Wei Y, Song XH, Ren Y, Wang WD, Rao MM, Lin Y, Chen ZH, Lu J, Wang CM, Amine K, Pan F. Tuning of thermal stability in layered Li(NixMnyCoz)O2. J. Am. Chem. Soc, 2016, 138(40): 13326.
|
| [109] |
A. Manthiram, J.C. Knight, S.T. Myung, S.M. Oh, and Y.K. Sun, Nickel-rich and lithium-rich layered oxide cathodes: Progress and perspectives, Adv. Energy Mater., 6(2016), No. 1, art. No. 1501010.
|
| [110] |
J.H. Wang, Y. Yamada, K. Sodeyama, C.H. Chiang, Y. Tateyama, and A. Yamada, Superconcentrated electrolytes for a high-voltage lithium-ion battery, Nat. Commun., 7(2016), art. No. 12032.
|
| [111] |
Reimers JN, Li W, Dahn JR. Short-range cation ordering in LixNi2−zO2. Phys. Rev. B, 1993, 47(14): 8486.
|
| [112] |
Nam KW, Bak SM, Hu EY, Yu XQ, Zhou Y, Wang XJ, Wu LJ, Zhu YM, Chung KY, Yang XQ. Combining in situ synchrotron X-ray diffraction and absorption techniques with transmission electron microscopy to study the origin of thermal instability in overcharged cathode materials for lithium-ion batteries. Adv. Funct. Mater, 2013, 23(8): 1047.
|
| [113] |
Li J, Downie LE, Ma L, Qiu WD, Dahn JR. Study of the failure mechanisms of LiNi0.8Mn0.1Co0.1O2 Cathode material for lithium ion batteries. J. Electrochem. Soc, 2015, 162(7): A1401.
|
| [114] |
Li M, Lu J. Cobalt in lithium-ion batteries. Science, 2020, 367(6481): 979.
|
| [115] |
Tang MJ, Yang J, Chen NT, Zhu SC, Wang X, Wang T, Zhang CC, Xia YY. Overall structural modification of a layered Ni-rich cathode for enhanced cycling stability and rate capability at high voltage. J. Mater. Chem. A, 2019, 7(11): 6080.
|
| [116] |
Kim H, Kim MG, Jeong HY, Nam H, Cho J. A new coating method for alleviating surface degradation of LiNi0.6Co0.2Mn0.2O2 cathode material: Nanoscale surface treatment of primary particles. Nano Lett., 2015, 15(3): 2111.
|
| [117] |
Y. Shin and A. Manthiram, Microstrain and capacity fade in spinel manganese oxides, Electrochem. Solid-State Lett., 5(2002), No. 3, art. No. A55.
|
| [118] |
Sun YK, Myung ST, Kim MH, Prakash J, Amine K. Synthesis and characterization of Li [(Ni0.8Co0.1Mn0.1)0.8(Ni0.5Mn0.5)0.2]O2 with the microscale core-shell structure as the positive electrode material for lithium batteries. J. Am. Chem. Soc., 2005, 127(38): 13411.
|
| [119] |
Brandt LR, Marie JJ, Moxham T, Förstermann DP, Salvati E, Besnard C, Papadaki C, Wang ZF, Bruce PG, Korsunsky AM. Synchrotron X-ray quantitative evaluation of transient deformation and damage phenomena in a single nickel-rich cathode particle. Energy Environ. Sci, 2020, 13(10): 3556.
|
| [120] |
Wang LF, Wang R, Wang JY, Xu R, Wang XD, Zhan C. Nanowelding to improve the chemomechanical stability of the Ni-rich layered cathode materials. ACS Appl. Mater. Interfaces, 2021, 13(7): 8324.
|
| [121] |
Bak SM, Hu EY, Zhou YN, Yu XQ, Senanayake SD, Cho SJ, Kim KB, Chung KY, Yang XQ, Nam KW. Structural changes and thermal stability of charged LiNixMnyCozO2 cathode materials studied by combined in situ time-resolved XRD and mass spectroscopy. ACS Appl. Mater. Interfaces, 2014, 6(24): 22594.
|
| [122] |
Noh HJ, Youn S, Yoon CS, Sun YK. Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. J. Power Sources, 2013, 233, 121.
|
| [123] |
X. Shen, X.Q. Zhang, F. Ding, J.Q. Huang, R. Xu, X. Chen, C. Yan, F.Y. Su, C.M. Chen, X.J. Liu, Q. Zhang, Advanced electrode materials in lithium batteries: Retrospect and prospect, Energy Mater. Adv., 2021(2021), art. No. 1205324.
|