Synergistically coupling of graphene quantum dots with Zn-intercalated MnO2 cathode for high-performance aqueous Zn-ion batteries

Minjie Shi , Hangtian Zhu , Cong Chen , Jintian Jiang , Liping Zhao , Chao Yan

International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (1) : 25 -32.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (1) : 25 -32. DOI: 10.1007/s12613-022-2441-4
Article

Synergistically coupling of graphene quantum dots with Zn-intercalated MnO2 cathode for high-performance aqueous Zn-ion batteries

Author information +
History +
PDF

Abstract

Cost-effective, safe, and highly performing energy storage devices require rechargeable batteries, and among various options, aqueous zinc-ion batteries (ZIBs) have shown high promise in this regard. As a cathode material for the aqueous ZIBs, manganese dioxide (MnO2) has been found to be promising, but certain drawbacks of this cathode material are slow charge-transfer capability and poor cycling performance. Herein, a novel design of graphene quantum dots (GQDs) integrated with Zn-intercalated MnO2 nanosheets is put forward to construct a 3D nanoflower-like GQDs@Zn xMnO2 composite cathode for aqueous ZIBs. The synergistic coupling of GQDs modification with Zn intercalation provides abundant active sites and conductive medium to facilitate the ion/electron transmission, as well as ensure the GQDs@Zn xMnO2 composite cathode with enhanced charge-transfer capability and high electrochemical reversibility, which are elucidated by experiment results and in-situ Raman investigation. These impressive properties endow the GQDs@Zn xMnO2 composite cathode with superior aqueous Zn2+ storage capacity (∼403.6 mAh·g−1), excellent electrochemical kinetics, and good structural stability. For actual applications, the fabricated aqueous ZIBs can deliver a substantial energy density (226.8 W·h·kg−1), a remarkable power density (650 W·kg−1), and long-term cycle performance, further stimulating their potential application as efficient electrochemical storage devices for various energy-related fields.

Keywords

synergistically coupling / intercalation engineering / graphene quantum dots / manganese oxides / aqueous batteries

Cite this article

Download citation ▾
Minjie Shi, Hangtian Zhu, Cong Chen, Jintian Jiang, Liping Zhao, Chao Yan. Synergistically coupling of graphene quantum dots with Zn-intercalated MnO2 cathode for high-performance aqueous Zn-ion batteries. International Journal of Minerals, Metallurgy, and Materials, 2023, 30(1): 25-32 DOI:10.1007/s12613-022-2441-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang F, Borodin O, Gao T, Fan XL, Sun W, Han FD, Faraone A, Dura JA, Xu K, Wang CS. Highly reversible zinc metal anode for aqueous batteries. Nat. Mater., 2018, 17(6): 543.

[2]

Liang GJ, Mo FN, Ji XL, Zhi CY. Non-metallic charge carriers for aqueous batteries. Nat. Rev. Mater., 2021, 6(2): 109.

[3]

Y. Zhang, F. Wan, S. Huang, S. Wang, Z.Q. Niu, and J. Chen, A chemically self-charging aqueous zinc-ion battery, Nat. Commun., 11(2020), art. No. 2199.

[4]

Small Methods, 2019, 3(1) art. No. 1800272

[5]

Qin XH, Du YH, Zhang PC, Wang XY, Lu QQ, Yang AK, Sun JC. Layered Barium vanadate nanobelts for high-performance aqueous zinc-ion batteries. Int. J. Miner. Metall. Mater., 2021, 28(10): 1684.

[6]

Tang BY, Shan LT, Liang SQ, Zhou J. Issues and opportunities facing aqueous zinc-ion batteries. Energy Environ. Sci., 2019, 12(11): 3288.

[7]

Small, 2020, 16(5) art. No. 1905842

[8]

Small, 2018, 14(13) art. No. 1703850

[9]

Adv. Funct. Mater., 2018, 28(41) art. No. 1802564

[10]

Yadav GG, Turney D, Huang JC, Wei X, Banerjee S. Breaking the 2 V barrier in aqueous zinc chemistry: Creating 2.45 and 2.8 V MnO2—Zn aqueous batteries. ACS Energy Lett., 2019, 4(9): 2144.

[11]

Chao DL, Zhou WH, Ye C, Zhang QH, Chen YG, Gu L, Davey K, Qiao SZ. An electrolytic Zn-MnO2 battery for high-voltage and scalable energy storage. Angew. Chem. Int. Ed., 2019, 58(23): 7823.

[12]

Adv. Mater., 2020, 32(50) art. No. 2002450

[13]

Zhang HZ, Liu QY, Wang J, Chen KF, Xue DF, Liu J, Lu XH. Boosting the Zn-ion storage capability of birnessite manganese oxide nanoflorets by La3+ intercalation. J. Mater. Chem. A, 2019, 7(38): 22079.

[14]

Zhao Y, Wang B, Shi MJ, An SB, Zhao LP, Yan C. Mg-intercalation engineering of MnO2 electrode for high-performance aqueous magnesium-ion batteries. Int. J. Miner. Metall. Mater., 2022, 29(11): 1954.

[15]

Adv. Energy Mater., 2020, 10(29) art. No. 2001275

[16]

Bak S, Kim D, Lee H. Graphene quantum dots and their possible energy applications: A review. Curr. Appl. Phys., 2016, 16(9): 1192.

[17]

Zahir N, Magri P, Luo W, Gaumet JJ, Pierrat P. Recent advances on graphene quantum dots for electrochemical energy storage devices. Energy Environ. Mater., 2022, 5(1): 201.

[18]

Liu QW, Sun JH, Gao K, Chen N, Sun XT, Ti D, Bai CC, Cui RR, Qu LT. Graphene quantum dots for energy storage and conversion: From fabrication to applications. Mater. Chem. Front., 2020, 4(2): 421.

[19]

Han Y, Liu SY, Cui L, Xu L, Xie J, Xia XK, Hao WK, Wang B, Li H, Gao J. Graphene-immobilized flower-like Ni3S2 nanoflakes as a stable binder-free anode material for sodium-ion batteries. Int. J. Miner. Metall. Mater., 2018, 25(1): 88.

[20]

Zhang WY, Yang YN, Xia RQ, Li YC, Zhao JQ, Lin L, Cao JM, Wang QH, Liu Y, Guo HW. Graphene-quantum-dots-induced MnO2 with needle-like nanostructure grown on carbonized wood as advanced electrode for supercapacitors. Carbon, 2020, 162, 114.

[21]

Lv HP, Yuan Y, Xu QJ, Liu HM, Wang YG, Xia YY. Carbon quantum dots anchoring MnO2/graphene aerogel exhibits excellent performance as electrode materials for supercapacitor. J. Power Sources, 2018, 398, 167.

[22]

Li GZ, Huang ZX, Chen JB, Yao F, Liu JP, Li OL, Sun SH, Shi ZC. Rechargeable Zn-ion batteries with high power and energy densities: A two-electron reaction pathway in birnessite MnO2 cathode materials. J. Mater. Chem. A, 2020, 8(4): 1975.

[23]

Xu J, Hou KX, Ju ZW, Ma CJ, Wang WC, Wang C, Cao JY, Chen ZD. Synthesis and electrochemical properties of carbon dots/manganese dioxide (CQDs/MnO2) nanoflowers for supercapacitor applications. J. Electrochem. Soc., 2017, 164(2): A430.

[24]

Nguyen VH, Huynh LTN, Nguyen TH, Vu TP, Le MLP, Grag A, Tran VM. Promising electrode material using Ni-doped layered manganese dioxide for sodium-ion batteries. J. Appl. Electrochem., 2018, 48(7): 793.

[25]

Liu GX, Huang HW, Bi R, Xiao X, Ma TY, Zhang L. K+ pre-intercalated manganese dioxide with enhanced Zn2+ diffusion for high rate and durable aqueous zinc-ion batteries. J. Mater. Chem. A, 2019, 7(36): 20806.

[26]

X.L. Zeng, B. Li, R.Q. Liu, X. Li, and T.L. Zhu, Investigation of promotion effect of Cu doped MnO2 catalysts on ketone-type VOCs degradation in a one-stage plasma-catalysis system, Chem. Eng. J., 384(2020), art. No. 123362.

[27]

Adv. Sci., 2018, 5(5) art. No. 1700887

[28]

Wang JJ, Wang JG, Liu HY, Wei CG, Kang FY. Zinc ion stabilized MnO2 nanospheres for high capacity and long lifespan aqueous zinc-ion batteries. J. Mater. Chem. A, 2019, 7(22): 13727.

[29]

Small, 2020, 16(14) art. No. 2000091

[30]

C. Chen, M.J. Shi, Y. Zhao, C. Yang, L.P. Zhao, and C. Yan, Al-intercalated MnO2 cathode with reversible phase transition for aqueous Zn-ion batteries, Chem. Eng. J., 422(2021), art. No. 130375.

[31]

J.Q. Zheng, C.F. Liu, M. Tian, X.X. Jia, E.P. Jahrman, G.T. Seidler, S.Q. Zhang, Y.Y. Liu, Y.F. Zhang, C.G. Meng, and G.Z. Cao, Fast and reversible zinc ion intercalation in Al-ion modified hydrated vanadate, Nano Energy, 70(2020), art. No. 104519.

[32]

Nano-micro Lett., 2019, 11(1) art. No. 25

[33]

Guo C, Liu HM, Li JF, Hou ZG, Liang JW, Zhou J, Zhu YC, Qian YT. Ultrathin S-MnO2 nanosheets as cathode for aqueous rechargeable zinc ion battery. Electrochim. Acta, 2019, 304, 370.

[34]

Yang LF, Cheng S, Wang JH, Ji X, Jiang Y, Yao MH, Wu P, Wang MK, Zhou J, Liu ML. Investigation into the origin of high stability of S-MnO2 pseudo-capacitive electrode using operando Raman spectroscopy. Nano Energy, 2016, 30, 293.

[35]

Adv. Energy Mater., 2019, 9(3) art. No. 1802707

[36]

Boyd S, Ganeshan K, Tsai WY, Wu T, Saeed S, Jiang DE, Balke N, van Duin ACT, Augustyn V. Effects of inter-layer confinement and hydration on capacitive charge storage in birnessite. Nat. Mater., 2021, 20(12): 1689.

[37]

Adv. Funct. Mater., 2019, 29(8) art. No. 1806778

[38]

Wang C, Zeng YX, Xiao X, Wu SJ, Zhong GB, Xu KQ, Wei ZF, Su W, Lu XH. γ-MnO2 nanorods/graphene composite as efficient cathode for advanced rechargeable aqueous zinc-ion battery. J. Energy Chem., 2020, 43, 182.

[39]

Shi MJ, Zhu HT, Yang C, Xu J, Yan C. Chemical reduction-induced fabrication of graphene hybrid fibers for energy-dense wire-shaped supercapacitors. Chin. J. Chem. Eng., 2022, 47, 1.

[40]

Wang XH, Mathis TS, Li K, Lin ZF, Vlcek L, Torita T, Osti NC, Hatter C, Urbankowski P, Sarycheva A, Tyagi M, Mamontov E, Simon P, Gogotsi Y. Influences from solvents on charge storage in titanium carbide MXenes. Nat. Energy, 2019, 4(3): 241.

[41]

L. Zhang, X.H. Zhang, G.Y. Tian, Q.H. Zhang, M. Knapp, H. Ehrenberg, G. Chen, Z.X. Shen, G.C. Yang, L. Gu, and F. Du, Lithium lanthanum titanate perovskite as an anode for lithium ion batteries, Nat. Commun., 11(2020), art. No. 3490.

[42]

R.Y. Wang, M.J. Shi, L.Y. Li, Y. Zhao, L.P. Zhao, and C. Yan, In-situ investigation and application of cyano-substituted organic electrode for rechargeable aqueous Na-ion batteries, Chem. Eng. J., 451(2023), art. No. 138652.

[43]

Ahmad R, Khan UA, Iqbal N, Noor T. Zeolitic imidazolate framework (ZIF)-derived porous carbon materials for supercapacitors: An overview. RSC Adv., 2020, 10(71): 43733.

AI Summary AI Mindmap
PDF

117

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/