Effect of transport agent boron triiodide on the synthesis and crystal quality of boron arsenide

Zhenxing Liu , Fangjie Deng , Yuan Zhou , Yanjie Liang , Cong Peng , Bing Peng , Feiping Zhao , Zhihui Yang , Liyuan Chai

International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (4) : 662 -670.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (4) : 662 -670. DOI: 10.1007/s12613-022-2438-z
Article

Effect of transport agent boron triiodide on the synthesis and crystal quality of boron arsenide

Author information +
History +
PDF

Abstract

Cubic boron arsenide (BAs) has attracted great attention due to its high thermal conductivity, however, its controllable, stable, and ideal preparation remains challenging. Herein, we investigated the effect of iodine-containing transport agents I2 and boron triiodide (BI3) on BAs synthesized and grown through chemical vapor transport. Results show that similar to the commonly used I2, BI3 accelerates the synthesis and improves the mass fraction of BAs from ∼12% to over 90% at 820°C and 1.5 MPa, a value beyond the promoting effect of only increasing temperature and pressure. Both agents enhance the quality of BAs crystals by reducing the full width at half maximum by up to 10%–20%. I2 agglomerates the grown crystals with twin defects (∼50 nm wide), and BI3 improves the crystal anisotropy and element uniformity of BAs crystals with narrow twins (∼15 nm wide) and increases the stoichiometry ratio (∼0.990) to almost 1. Owing to the boron interstitials from the excessive boron supply, the spacing of layers in {111} increases to 0.286 nm in the presence of I2. Owing to its coordinated effect, BI3 only slightly influences the layer spacing at 0.275 nm, which is close to the theoretical value of 0.276 nm. In the chemical vapor transport, the anisotropic crystals with flat surfaces exhibit single-crystal characteristics under the action of BI3. Different from that of I2, the coordinated effect of BI3 can promote the efficient preparation of high-quality BAs crystal seeds and facilitate the advanced application of BAs.

Keywords

boron arsenide / transport agent / boron-arsenic reaction / iodine / boron triiodide

Cite this article

Download citation ▾
Zhenxing Liu, Fangjie Deng, Yuan Zhou, Yanjie Liang, Cong Peng, Bing Peng, Feiping Zhao, Zhihui Yang, Liyuan Chai. Effect of transport agent boron triiodide on the synthesis and crystal quality of boron arsenide. International Journal of Minerals, Metallurgy, and Materials, 2022, 29(4): 662-670 DOI:10.1007/s12613-022-2438-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kang JS, Li M, Wu H, Nguyen H, Hu YJ. Experimental observation of high thermal conductivity in boron arsenide. Science, 2018, 361(6402): 575.

[2]

Tian F, Ren ZF. High thermal conductivity in boron arsenide: From prediction to reality. Angew. Chem. Int. Ed. Engl., 2019, 58(18): 5824.

[3]

Sealy C. Boron arsenide helps devices keep their cool. Nano Today, 2018, 22, 2.

[4]

T.L. Feng, L. Lindsay, and X.L. Ruan, Four-phonon scattering significantly reduces intrinsic thermal conductivity of solids, Phys. Rev. B, 96(2017), No. 16, art. No. 161201.

[5]

N.H. Protik, J. Carrete, N.A. Katcho, N. Mingo, and D. Broido, Ab initio study of the effect of vacancies on the thermal conductivity of boron arsenide, Phys. Rev. B, 94(2016), No. 4, art. No. 045207.

[6]

L. Lindsay, D.A. Broido, and T.L. Reinecke, First-principles determination of ultrahigh thermal conductivity of boron arsenide: A competitor for diamond?, Phys. Rev. Lett., 111(2013), No. 2, art. No. 025901.

[7]

Q. Zheng, C.A. Polanco, M.H. Du, L.R. Lindsay, M.F. Chi, J.Q. Yan, and B.C. Sales, Antisite pairs suppress the thermal conductivity of BAs, Phys. Rev. Lett., 121(2018), No. 10, art. No. 105901.

[8]

J.A. Perri, S. La Placa, and B. Post, New group III-group V compounds: BP and BAs, Acta Crystallogr., 11(1958), No. 4, art. No. 310.

[9]

Wang SJ, Swingle SF, Ye H, Fan FRF, Cowley AH, Bard AJ. Synthesis and characterization of a p-type boron arsenide photoelectrode. J. Am. Chem. Soc., 2012, 134(27): 11056.

[10]

J. Kim, D.A. Evans, D.P. Sellan, O.M. Williams, E. Ou, A.H. Cowley, and L. Shi, Thermal and thermoelectric transport measurements of an individual boron arsenide microstructure, Appl. Phys. Lett., 108(2016), No. 20, art. No. 201905.

[11]

Whiteley CE, Zhang Y, Gong Y, Bakalova S, Mayo A, Edgar JH, Kuball M. Semiconducting icosahedral boron arsenide crystal growth for neutron detection. J. Cryst. Growth, 2011, 318(1): 553.

[12]

Pomeroy JW, Kuball M, Hubel H, Van Uden NWA, Dunstan DJ, Nagarajan R, Edgar JH. Raman spectroscopy of B12As2 under high pressure. J. Appl. Phys., 2004, 96(1): 910.

[13]

B. Lv, Y.C. Lan, X.Q. Wang, Q. Zhang, Y.J. Hu, A.J. Jacobson, D. Broido, G. Chen, Z.F. Ren, and C.W. Chu, Experimental study of the proposed super-thermal-conductor: BAs, Appl. Phys. Lett., 106(2015), No. 7, art. No. 074105.

[14]

F. Tian, B. Song, B. Lv, J.Y. Sun, S.Y. Huyan, Q. Wu, J. Mao, Y.Z. Ni, Z.W. Ding, S. Huberman, T.H. Liu, G. Chen, S. Chen, C.W. Chu, and Z.F. Ren, Seeded growth of boron arsenide single crystals with high thermal conductivity, Appl. Phys. Lett., 112(2018), No. 3, art. No. 031903.

[15]

G.A. Gamage, K. Chen, G. Chen, F. Tian, and Z. Ren, Effect of nucleation sites on the growth and quality of single-crystal boron arsenide, Mater. Today Phys., 11(2019), art. No. 100160.

[16]

G.A. Gamage, H.R. Sun, H. Ziyaee, F. Tian, and Z.F. Ren, Effect of boron sources on the growth of boron arsenide single crystals by chemical vapor transport, Appl. Phys. Lett., 115(2019), No. 9, art. No. 092103.

[17]

H. Sun, K. Chen, G.A. Gamage, H. Ziyaee, F. Wang, Y. Wang, V.G. Hadjiev, F. Tian, G. Chen, and Z. Ren, Boron isotope effect on the thermal conductivity of boron arsenide single crystals, Mater. Today Phys., 11(2019), art. No. 100169.

[18]

F. Tian, K. Luo, C.L. Xie, B. Liu, X.W. Liang, L.Y. Wang, G.A. Gamage, H.R. Sun, H. Ziyaee, J.Y. Sun, Z.S. Zhao, B. Xu, G.Y. Gao, X.F. Zhou, and Z.F. Ren, Mechanical properties of boron arsenide single crystal, Appl. Phys. Lett., 114(2019), No. 13, art. No. 131903.

[19]

Li S, Zheng QY, Lv YC, Liu XY, Wang XQ, Huang PY, Cahill DG, Lv B. High thermal conductivity in cubic boron arsenide crystals. Science, 2018, 361(6402): 579.

[20]

J. Xing, E.R. Glaser, B. Song, J.C. Culbertson, J.A. Freitas, R.A. Duncan, K.A. Nelson, G. Chen, and N. Ni, Gas-pressure chemical vapor transport growth of millimeter-sized c-BAs single crystals with moderate thermal conductivity, Appl. Phys. Lett., 112(2018), No. 24, art. No. 241903.

[21]

J. Xing, X. Chen, Y.Y. Zhou, J.C. Culbertson, J.A. Freitas, E.R. Glaser, J.S. Zhou, L. Shi, and N. Ni, Multimillimeter-sized cubic boron arsenide grown by chemical vapor transport via a tellurium tetraiodide transport agent, Appl. Phys. Lett., 112(2018), No. 26, art. No. 261901.

[22]

Chu TL, Hyslop AE. Crystal growth and properties of boron monoarsenide. J. Appl. Phys., 1972, 43(2): 276.

[23]

J.L. Lyons, J.B. Varley, E.R. Glaser, J.A. Freitas, J.C. Culbertson, F. Tian, G.A. Gamage, H.R. Sun, H. Ziyaee, and Z.F. Ren, Impurity-derived p-type conductivity in cubic boron arsenide, Appl. Phys. Lett., 113(2018), No. 25, art. No. 251902.

[24]

Detz H, MacFarland D, Zederbauer T, Lancaster S, Andrews AM, Schrenk W, Strasser G. Growth rate dependence of boron incorporation into BxGa1−xAs layers. J. Cryst. Growth, 2017, 477, 77.

[25]

Dumont H, Rutzinger D, Vincent C, Dazord J, Monteil Y, Alexandre F, Gentner JL. Surface segregation of boron in BxGa1−xAs/GaAs epilayers studied by X-ray photoelectron spectroscopy and atomic force microscopy. Appl. Phys. Lett., 2003, 82(12): 1830.

[26]

Tian F, Song B, Chen X, Ravichandran NK, Lv YC, Chen K, Sullivan S, Kim J, Zhou YY, Liu TH, Goni M, Ding ZW, Sun JY, Udalamatta Gamage GAG, Sun HR, Ziyaee H, Huyan SY, Deng LZ, Zhou JS, Schmidt AJ, Chen S, Chu CW, Huang PY, Broido D, Shi L, Chen G, Ren ZF. Unusual high thermal conductivity in boron arsenide bulk crystals. Science, 2018, 361(6402): 582.

[27]

Klement W, Jayaraman A, Kennedy GC. Phase diagrams of arsenic, antimony, and bismuth at pressures up to 70 kbars. Phys. Rev., 1963, 131(2): 632.

[28]

Armington AF. Vapor transport of boron, boron phosphide and boron arsenide. J. Cryst. Growth, 1967, 1(1): 47.

[29]

Bouix J, Hillel R. Chemical transport of BAs and BP. J. Less-Common Met., 1976, 47, 67.

[30]

V.G. Hadjiev, M.N. Iliev, B. Lv, Z.F. Ren, and C.W. Chu, Anomalous vibrational properties of cubic boron arsenide, Phys. Rev. B, 89(2014), No. 2, art. No. 024308.

[31]

Londoño-Restrepo SM, Zubieta-Otero LF, Jeronimo-Cruz R, Mondragon MA, Rodriguez-García ME. Effect of the crystal size on the infrared and Raman spectra of bio hydroxyapatite of human, bovine, and porcine bones. J. Raman Spectrosc., 2019, 50(8): 1120.

[32]

J.J. Wang, D. Chen, Y. Xu, Q.X. Liu, and L.Y. Zhang, Influence of the crystal texture on Raman spectroscopy of the AlN films prepared by pulse laser deposition, J. Spectrosc., 2013(2013), art. No. 103602.

[33]

X.H. Meng, A. Singh, R. Juneja, Y.Y. Zhang, F. Tian, Z.F. Ren, A.K. Singh, L. Shi, J.F. Lin, and Y.G. Wang, Pressure-dependent behavior of defect-modulated band structure in boron arsenide, Adv. Mater., 32(2020), No. 45, art. No. e2001942.

[34]

M. Endo, H. Uchiyama, Y. Ohno, and J. Hirotani, Temperature dependence of Raman shift in defective single-walled carbon nanotubes, Appl. Phys. Express, 15(2022), No. 2, art. No. 025001.

AI Summary AI Mindmap
PDF

104

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/