Relationship between elements migration of α-AlFeMnSi phase and micro-galvanic corrosion sensitivity of Al—Zn—Mg alloy

Min Ao , Yucheng Ji , Pan Yi , Ni Li , Li Wang , Kui Xiao , Chaofang Dong

International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (1) : 112 -121.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (1) : 112 -121. DOI: 10.1007/s12613-022-2428-1
Article

Relationship between elements migration of α-AlFeMnSi phase and micro-galvanic corrosion sensitivity of Al—Zn—Mg alloy

Author information +
History +
PDF

Abstract

First principles calculations and scanning Kelvin probe force microscopy (SKPFM) were used to investigate the effect of elements migration of α-AlFeMnSi phase on micro-galvanic corrosion behavior of Al—Zn—Mg alloy. The simulation results showed that the average work function difference between the α-AlFeMnSi phase and Al matrix decreased from 0.232 to 0.065 eV due to the synchronous migration of elements Fe—Mn—Si. Specifically, as the elements Fe—Si migration during the extrusion process, the average Volta potential difference detected by SKPFM between the α-AlFeMnSi phase and Al matrix dropped down to 432.383 mV from 648.370 mV. Thus, the elements migration reduced the micro-galvanic corrosion sensitivity of Al—Zn—Mg alloy. To reach the calculated low micro-galvanic tendency between α-AlFeMnSi phase and Al matrix, the diffusion of Mn should be promoted during extruding process.

Keywords

Al—Zn—Mg alloy / corrosion behavior / α-AlFeMnSi phase / first principles calculations

Cite this article

Download citation ▾
Min Ao, Yucheng Ji, Pan Yi, Ni Li, Li Wang, Kui Xiao, Chaofang Dong. Relationship between elements migration of α-AlFeMnSi phase and micro-galvanic corrosion sensitivity of Al—Zn—Mg alloy. International Journal of Minerals, Metallurgy, and Materials, 2023, 30(1): 112-121 DOI:10.1007/s12613-022-2428-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zou Y, Wu XD, Tang SB, Zhu QQ, Song H, Guo MX, Cao LF. Investigation on microstructure and mechanical properties of Al—Zn—Mg—Cu alloys with various Zn/Mg ratios. J. Mater. Sci. Technol., 2021, 85, 106.

[2]

R.X. Li, Z. Ren, Y. Wu, Z.B. He, P.K. Liaw, J.L. Ren, and Y. Zhang, Mechanical behaviors and precipitation transformation of the lightweight high-Zn-content Al—Zn—Li—Mg—Cu alloy, Mater. Sci. Eng. A, 802(2021), art. No. 140637.

[3]

Albedah A, Bouiadjra BB, Mohammed SMAK, Benyahia F. Fractographic analysis of the overload effect on fatigue crack growth in 2024-T3 and 7075-T6 Al alloys. Int. J. Miner. Metall. Mater., 2020, 27(1): 83.

[4]

Li CM, Chen ZQ, Zeng SM, Cheng NP, Chen TX. Intermetallic phase formation and evolution during homogenization and solution in Al—Zn—Mg—Cu alloys. Sci. China Technol. Sci., 2013, 56(11): 2827.

[5]

Park SY, Kim WJ. Difference in the hot compressive behavior and processing maps between the as-cast and homogenized Al—Zn—Mg—Cu (7075) alloys. J. Mater. Sci. Technol., 2016, 32(7): 660.

[6]

Xiao YP, Pan QL, Li WB, Liu XY, He YB. Influence of retrogression and re-aging treatment on corrosion behaviour of an Al—Zn—Mg—Cu alloy. Mater. Des., 2011, 32(4): 2149.

[7]

Xu C, Zheng RX, Hanada S, Xiao WL, Ma CL. Effect of hot extrusion and subsequent T6 treatment on the microstructure evolution and tensile properties of an Al—6Si—2Cu—0.5Mg alloy. Mater. Sci. Eng. A, 2018, 710, 102.

[8]

Li XM, Starink MJ. Identification and analysis of intermetallic phases in overaged Zr-containing and Cr-containing Al—Zn—Mg—Cu alloys. J. Alloys Compd., 2011, 509(2): 471.

[9]

Lv XY, Guo EJ, Li ZH, Wang GJ. Research on microstructure in as-cast 7A55 aluminum alloy and its evolution during homogenization. Rare Met., 2011, 30(6): 664.

[10]

Ganjehfard K, Taghiabadi R, Noghani MT, Ghoncheh MH. Tensile properties and hot tearing susceptibility of cast Al—Cu alloys containing excess Fe and Si. Int. J. Miner. Metall. Mater., 2021, 28(4): 718.

[11]

Rout PK, Ghosh MM, Ghosh KS. Effect of solution pH on electrochemical and stress corrosion cracking behaviour of a 7150 Al—Zn—Mg—Cu alloy. Mater. Sci. Eng. A, 2014, 604, 156.

[12]

Boag A, Hughes AE, Glenn AM, Muster TH, McCulloch D. Corrosion of AA2024-T3 Part I: Localised corrosion of isolated IM particles. Corros. Sci., 2011, 53(1): 17.

[13]

Zhang YD, Jin SB, Trimby PW, Liao XZ, Murashkin MY, Valiev RZ, Liu JZ, Cairney JM, Ringer SP, Sha G. Dynamic precipitation, segregation and strengthening of an Al—Zn—Mg—Cu alloy (AA7075) processed by high-pressure torsion. Acta Mater., 2019, 162, 19.

[14]

F. Liu, Z.Y. Liu, P.X. Jia, S. Bai, P.F. Yan, and Y.C. Hu, Dynamic dissolution and texture evolution of an Al—Cu—Mg—Ag alloy during hot rolling, J. Alloys Compd., 827(2020), art. No. 154254.

[15]

Fan CH, Ou L, Hu ZY, Yang JJ, Chen XH. re-dissolution and re-precipitation behavior of nano-precipitated phase in Al—Cu—Mg alloy subjected to rapid cold stamping. Trans. Nonferrous Met. Soc. China, 2019, 29(12): 2455.

[16]

H.L. He, Y.P. Yi, S.Q. Huang, W.F. Guo, and Y.X. Zhang, Effects of thermomechanical treatment on grain refinement, second-phase particle dissolution, and mechanical properties of 2219 Al alloy, J. Mater. Process. Technol., 278(2020), art. No. 116506.

[17]

Xie JX, Liu JA. Theory and Technology of Metals Extrusion, 2012, 2nd ed. Beijing, Metallurgical Industry Press

[18]

Li C, Liu K, Chen XG. Improvement of elevated-temperature strength and recrystallization resistance via Mn-containing dispersoid strengthening in Al—Mg—Si 6082 alloys. J. Mater. Sci. Technol., 2020, 39, 135.

[19]

F. Alvarez-Antolin, J. Asensio-Lozano, A. Cofiño-Villar, and A. Gonzalez-Pociño, Analysis of different solution treatments in the transformation of β-AlFeSi particles into α-(FeMn)Si and their influence on different ageing treatments in Al—Mg—Si alloys, Metals, 10(2020), No. 5, art. No. 620.

[20]

Kuijpers NCW, Vermolen FJ, Vuik K, Zwaag SVD. A model of the β-AlFeSi to α-Al(FeMn)Si transformation in Al—Mg—Si alloys. Mater. Trans., 2003, 44(7): 1448.

[21]

Ren JK, Fang XY, Chen DB, Cao C, He YW, Liu JB. The effect of heat treatments on the microstructural evolution of twin-roll-cast Al—Fe—Si alloys. J. Mater. Eng. Perform., 2021, 30(6): 4401.

[22]

Zhao ZJ, Frankel GS. On the first breakdown in AA7075-T6. Corros. Sci., 2007, 49(7): 3064.

[23]

M.C. Li, A. Seyeux, F. Wiame, P. Marcus, and J. Światowska, Insights on the Al—Cu—Fe—Mn intermetallic particles induced pitting corrosion of Al—Cu—Li alloy, Corros. Sci., 176(2020), art. No. 109040.

[24]

K. Uttarasak, W. Chongchitnan, K. Matsuda, T. Chairuangsri, J. Kajornchaiyakul, and C. Banjongprasert, Evolution of Fe-containing intermetallic phases and abnormal grain growth in 6063 aluminum alloy during homogenization, Results Phys., 15(2019), art. No. 102535.

[25]

H.B. Liu, H. Zhang, F.L. Jiang, and D.F. Fu, The intermetallic formation in the extruded AlSi20/8009 aluminum alloy during annealing treatment, Vacuum, 168(2019), art. No. 108800.

[26]

Duan CX, Tang JG, Ma WJ, Ye LY, Jiang HC, Deng YL, Zhang XM. Intergranular corrosion behavior of extruded 6005A alloy profile with different microstructures. J. Mater. Sci., 2020, 55(24): 10833.

[27]

Zhang XX, Zhou XR, Nilsson JO, Dong ZH, Cai CR. Corrosion behaviour of AA6082 Al—Mg—Si alloy extrusion: Recrystallized and non-recrystallized structures. Corros. Sci., 2018, 144, 163.

[28]

Y.C. Ji, C.F. Dong, L. Chen, K. Xiao, and X.G. Li, High-throughput computing for screening the potential alloying elements of a 7xxx aluminum alloy for increasing the alloy resistance to stress corrosion cracking, Corros. Sci., 183(2021), art. No. 109304.

[29]

M. Ao, H.M. Liu, C.F. Dong, S. Feng, and J.C. Liu, Degradation mechanism of 6063 aluminium matrix composite reinforced with TiC and Al2O3 particles, J. Alloys Compd., 859(2021), art. No. 157838.

[30]

Li N, Dong CF, Wei X, Man C, Yao JZ, Cao JL, Li XG. Scanning kelvin probe force microscopy and density functional theory studies on the surface potential of the intermetallics in AA7075-T6 alloys. J. Mater. Eng. Perform., 2019, 28(7): 4289.

[31]

Ao M, Dong CF, Li N, Wang L, Ji YC, Yue L, Sun XG, Zou SW, Xiao K, Li XG. Unexpected stress corrosion cracking improvement achieved by recrystallized layer in Al—Zn—Mg alloy. J. Mater. Eng. Perform., 2021, 30(8): 6258.

[32]

Li YJ, Muggerud AMF, Olsen A, Furu T. Precipitation of partially coherent α-Al(Mn, Fe)Si dispersoids and their strengthening effect in AA 3003 alloy. Acta Mater., 2012, 60(3): 1004.

[33]

Sweet L, Zhu SM, Gao SX, Taylor JA, Easton MA. The effect of iron content on the iron-containing intermetallic phases in a cast 6060 aluminum alloy. Metall. Mater. Trans. A, 2011, 42(7): 1737.

[34]

Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 1996, 54(16): 11169.

[35]

Zhang Y, Chen HX, Duan L, Fan JB, Ni L, Wang Z, Li H, Ji V. Studying the insulating characters of cubic ZrO2 slabs with nine terminations within three lower index Miller planes (001), (110) and (111). Microelectron. Eng., 2019, 213, 77.

[36]

Ji YC, Dong CF, Kong DC, Li XG. Design materials based on simulation results of silicon induced segregation at AlSi10Mg interface fabricated by selective laser melting. J. Mater. Sci. Technol., 2020, 46, 145.

[37]

N. Li, C.F. Dong, C. Man, and J.Z. Yao, In situ electrochemical atomic force microscopy and auger electro spectroscopy study on the passive film structure of 2024-T3 aluminum alloy combined with a density functional theory calculation, Adv. Eng. Mater., 21(2019), No. 12, art. No. 1900386.

[38]

Nişancioğlu K. Electrochemical behavior of aluminum-base intermetallics containing iron. J. Electrochem. Soc., 1990, 137(1): 69.

[39]

Rohwerder M, Turcu F. High-resolution Kelvin probe microscopy in corrosion science: Scanning Kelvin probe force microscopy (SKPFM) versus classical scanning Kelvin probe (SKP). Electrochim. Acta, 2007, 53(2): 290.

[40]

S.N. Zhevnenko, I.S. Petrov, D. Scheiber, and V.I. Razumovskiy, Surface and segregation energies of Ag based alloys with Ni, Co and Fe: Direct experimental measurement and DFT study, Acta Mater., 205(2021), art. No. 116565.

[41]

D. Simonovic and M.H.F. Sluiter, Impurity diffusion activation energies in Al from first principles, Phys. Rev. B, 79(2009), No. 5, art. No. 054304.

[42]

Rokni MR, Zarei-Hanzaki A, Roostaei AA, Abedi HR. An investigation into the hot deformation characteristics of 7075 aluminum alloy. Mater. Des., 2011, 32(4): 2339.

[43]

Robson JD. Microstructural evolution in aluminium alloy 7050 during processing. Mater. Sci. Eng. A, 2004, 382(1–2): 112.

[44]

Neumann G, Tuijn C. Self-diffusion and Impurity Diffusion in Pure Metals: Handbook of Experimental Data, 2008, 1st ed. Oxford, Pergamon

[45]

Fujikawa SI, Hirano KI, Fukushima Y. Diffusion of silicon in aluminum. Metall. Trans. A, 1978, 9(12): 1811.

[46]

Mantl S, Petry W, Schroeder K, Vogl G. Diffusion of iron in aluminum studied by Mössbauer spectroscopy. Phys. Rev. B, 1983, 27(9): 5313.

[47]

Huang K, Logé RE. A review of dynamic recrystallization phenomena in metallic materials. Mater. Des., 2016, 111, 548.

[48]

Q.W. Ding, D. Zhang, Y. Yan, L.Z. Zhuang, and J.S. Zhang, Role of subgrain stripe on the exfoliation corrosion of Al—4.6Mg—3.1Zn (wt.%) alloy, Corros. Sci., 169(2020), art. No. 108622.

[49]

Humphreys FJ, Hatherly M. Recrystallization and Related Annealing Phenomena, 2004, 2nd ed. Oxford, Pergamon

[50]

Huang Y, Humphreys FJ. The effect of solutes on grain boundary mobility during recrystallization and grain growth in some single-phase aluminium alloys. Mater. Chem. Phys., 2012, 132(1): 166.

[51]

Tanaka H, Minoda T. Mechanical properties of 7475 aluminum alloy sheets with fine subgrain structure by warm rolling. Trans. Nonferrous Met. Soc. China, 2014, 24(7): 2187.

[52]

X.Y. Jiao, C.F. Liu, Z.P. Guo, H. Nishat, G.D. Tong, S.L. Ma, Y. Bi, Y.F. Zhang, S. Wiesner, and S.M. Xiong, On the characterization of primary iron-rich phase in a high-pressure die-cast hypoeutectic Al—Si alloy, J. Alloys Compd., 862(2021), art. No. 158580.

[53]

Yang WC, Ji SX, Zhou XR, Stone I, Scamans G, Thompson GE, Fan ZY. Heterogeneous nucleation of α-Al grain on primary α-AlFeMnSi intermetallic investigated using 3D SEM ultramicrotomy and HRTEM. Metall. Mater. Trans. A, 2014, 45(9): 3971.

[54]

Wang J, Zhang B, Zhou YT, Ma XL. Multiple twins of a decagonal approximant embedded in S-Al2CuMg phase resulting in pitting initiation of a 2024Al alloy. Acta Mater., 2015, 82, 22.

[55]

H. Torbati-Sarraf, T.J. Stannard, E.C.L. Plante, G.N. Sant, and N. Chawla, Direct observations of microstructure-resolved corrosion initiation in AA7075-T651 at the nanoscale using vertical scanning interferometry (VSI), Mater. Charact., 161(2020), art. No. 110166.

AI Summary AI Mindmap
PDF

164

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/