Flexible electronics and optoelectronics of 2D van der Waals materials

Huihui Yu , Zhihong Cao , Zheng Zhang , Xiankun Zhang , Yue Zhang

International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (4) : 671 -690.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (4) : 671 -690. DOI: 10.1007/s12613-022-2426-3
Invited Review

Flexible electronics and optoelectronics of 2D van der Waals materials

Author information +
History +
PDF

Abstract

Flexible electronics and optoelectronics exhibit inevitable trends in next-generation intelligent industries, including healthcare and wellness, electronic skins, the automotive industry, and foldable or rollable displays. Traditional bulk-material-based flexible devices considerably rely on lattice-matched crystal structures and are usually plagued by unavoidable chemical disorders at the interface. Two-dimensional van der Waals materials (2D VdWMs) have exceptional multifunctional properties, including large specific area, dangling-bond-free interface, plane-to-plane van der Waals interactions, and excellent mechanical, electrical, and optical properties. Thus, 2D VdWMs have considerable application potential in functional intelligent flexible devices. To utilize the unique properties of 2D VdWMs and their van der Waals heterostructures, new designs and configurations of electronics and optoelectronics have emerged. However, these new designs and configurations do not consider lattice mismatch and process incompatibility issues. In this review, we summarized the recently reported 2D VdWM-based flexible electronic and optoelectronic devices with various functions thoroughly. Moreover, we identified the challenges and opportunities for further applications of 2D VdWM-based flexible electronics and optoelectronics.

Keywords

two-dimensional van der Waals material / two-dimensional van der Waals heterostructure / flexible electronics / flexible optoelectronics

Cite this article

Download citation ▾
Huihui Yu, Zhihong Cao, Zheng Zhang, Xiankun Zhang, Yue Zhang. Flexible electronics and optoelectronics of 2D van der Waals materials. International Journal of Minerals, Metallurgy, and Materials, 2022, 29(4): 671-690 DOI:10.1007/s12613-022-2426-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zheng YT, Wei JJ, Liu JL, Chen LX, An K, Zhang XT, Ye HT, Ouyang XP, Li CM. Carbon materials: The burgeoning promise in electronics. Int. J. Miner. Metall. Mater., 2022, 29(3): 404.

[2]

Lin ZY, Huang Y, Duan XF. Van der Waals thin-film electronics. Nat. Electron., 2019, 2(9): 378.

[3]

Li N, Wang QQ, Shen C, Wei Z, Yu H, Zhao J, Lu XB, Wang GL, He CL, Xie L, Zhu JQ, Du LJ, Yang R, Shi DX, Zhang GY. Large-scale flexible and transparent electronics based on monolayer molybdenum disulfide field-effect transistors. Nat. Electron., 2020, 3(11): 711.

[4]

Dai MJ, Chen HY, Wang FK, Hu YX, Wei S, Zhang J, Wang ZG, Zhai TY, Hu PA. Robust piezo-phototronic effect in multilayer γ-InSe for high-performance self-powered flexible photodetectors. ACS Nano, 2019, 13(6): 7291.

[5]

X.Q. Chen, K. Shehzad, L. Gao, M.S. Long, H. Guo, S.C. Qin, X.M. Wang, F.Q. Wang, Y. Shi, W.D. Hu, Y. Xu, and X.R. Wang, Graphene hybrid structures for integrated and flexible optoelectronics, Adv. Mater., 32(2020), No. 27, art. No. 1902039.

[6]

Yang T, Zheng YP, Chou KC, Hou XM. Tunable fabrication of single-crystalline CsPbI3 nanobelts and their application as photodetectors. Int. J. Miner. Metall. Mater., 2021, 28(6): 1030.

[7]

Kim Y, Chortos A, Xu WT, Liu YX, Oh JY, Son D, Kang J, Foudeh AM, Zhu CX, Lee Y, Niu SM, Liu J, Pfattner R, Bao ZA, Lee TW. A bioinspired flexible organic artificial afferent nerve. Science, 2018, 360(6392): 998.

[8]

Song YM, Xie YZ, Malyarchuk V, Xiao JL, Jung I, Choi KJ, Liu ZJ, Park H, Lu CF, Kim RH, Li R, Crozier KB, Huang YG, Rogers JA. Digital cameras with designs inspired by the arthropod eye. Nature, 2013, 497(7447): 95.

[9]

Sangwan VK, Hersam MC. Neuromorphic nanoelectronic materials. Nat. Nanotechnol., 2020, 15(7): 517.

[10]

X. Zhao, Z. Zhang, Q.L. Liao, X.C. Xun, F.F. Gao, L.X. Xu, Z. Kang, and Y. Zhang, Self-powered user-interactive electronic skin for programmable touch operation platform, Sci. Adv., 6(2020), No. 28, art. No. eaba4294.

[11]

D. Akinwande, N. Petrone, and J. Hone, Two-dimensional flexible nanoelectronics, Nat. Commun., 5(2014), art. No. 5678.

[12]

L.F. Xue, Z. Zhang, L.X. Xu, F.F. Gao, X. Zhao, X.C. Xun, B. Zhao, Z. Kang, Q.L. Liao, and Y. Zhang, Information accessibility oriented self-powered and ripple-inspired fingertip interactors with auditory feedback, Nano Energy, 87(2021), art. No. 106117.

[13]

X. Zhao, Z. Zhang, L.X. Xu, F.F. Gao, B. Zhao, T. Ouyang, Z. Kang, Q.L. Liao, and Y. Zhang, Fingerprint-inspired electronic skin based on triboelectric nanogenerator for fine texture recognition, Nano Energy, 85(2021), art. No. 106001.

[14]

M. Choi, Y.J. Park, B.K. Sharma, S.R. Bae, S.Y. Kim, and J.H. Ahn, Flexible active-matrix organic light-emitting diode display enabled by MoS2 thin-film transistor, Sci. Adv., 4(2018), No. 4, art. No. eaas8721.

[15]

Kim D, Lee D, Lee Y, Jeon DY. Work-function engineering of graphene anode by bis(trifluoromethanesulfonyl) amide doping for efficient polymer light-emitting diodes. Adv. Funct. Mater., 2013, 23(40): 5049.

[16]

Du JY, Zhang MQ, Tian JJ. Controlled crystal orientation of two-dimensional Ruddlesden-Popper halide perovskite films for solar cells. Int. J. Miner. Metall. Mater., 2022, 29(1): 49.

[17]

Zheng JH, Zhu LX, Shen ZT, Li FM, Ling LY, Li HL, Chen C. Effects of the incorporation amounts of CdS and Cd(SCN2H4)2Cl2 on the performance of perovskite solar cells. Int. J. Miner. Metall. Mater., 2022, 29(2): 283.

[18]

Qu GX, Cheng JL, Li XD, Yuan DM, Chen PN, Chen XL, Wang B, Peng HS. A fiber supercapacitor with high energy density based on hollow graphene/conducting polymer fiber electrode. Adv. Mater., 2016, 28(19): 3646.

[19]

Jiang J, Hu WN, Xie DD, Yang JL, He J, Gao YL, Wan Q. 2D electric-double-layer phototransistor for photoelectronic and spatiotemporal hybrid neuromorphic integration. Nanoscale, 2019, 11(3): 1360.

[20]

J.L. Du, H.H. Yu, B.S. Liu, M.Y. Hong, Q.L. Liao, Z. Zhang, and Y. Zhang, Strain engineering in 2D material-based flexible optoelectronics, Small Methods, 5(2021), No. 1, art. No. 2000919.

[21]

H.H. Yu, Q.L. Liao, Z. Kang, Z.Y. Wang, B.S. Liu, X.K. Zhang, J.L. Du, Y. Ou, M.Y. Hong, J.K. Xiao, Z. Zhang, and Y. Zhang, Atomic-thin ZnO sheet for visible-blind ultraviolet photodetection, Small, 16(2020), No. 47, art. No. 2005520.

[22]

Yang RQ, Liang N, Chen XY, Wang LW, Song GX, Ji YC, Ren N, YW, Zhang J, Yu X. Sn/Sn3O4−x heterostructure rich in oxygen vacancies with enhanced visible light photocatalytic oxidation performance. Int. J. Miner. Metall. Mater., 2021, 28(1): 150.

[23]

Wu MH, Zhang ZB, Xu XZ, Zhang ZH, Duan YR, Dong JC, Qiao RX, You SF, Wang L, Qi JJ, Zou DX, Shang NZ, Yang YB, Li H, Zhu L, Sun JL, Yu HJ, Gao P, Bai XD, Jiang Y, Wang ZJ, Ding F, Yu DP, Wang EG, Liu KH. Seeded growth of large single-crystal copper foils with high-index facets. Nature, 2020, 581(7809): 406.

[24]

Park J, Hwang JC, Kim GG, Park JU. Flexible electronics based on one-dimensional and two-dimensional hybrid nanomaterials. InfoMat, 2020, 2(1): 33.

[25]

Jiang HJ, Zheng L, Liu Z, Wang XW. Two-dimensional materials: From mechanical properties to flexible mechanical sensors. InfoMat, 2020, 2(6): 1077.

[26]

Zhang XK, Liao QL, Kang Z, Liu BS, Ou Y, Du JL, Xiao JK, Gao L, Shan HY, Luo Y, Fang ZY, Wang PD, Sun Z, Zhang Z, Zhang Y. Self-healing originated Van der Waals homojunctions with strong interlayer coupling for high-performance photodiodes. ACS Nano, 2019, 13(3): 3280.

[27]

Liu BS, Du JL, Yu HH, Hong MY, Kang Z, Zhang Z, Zhang Y. The coupling effect characterization for van der Waals structures based on transition metal dichalcogenides. Nano Res., 2021, 14(6): 1734.

[28]

Zhang JY, Yu Y, Wang P, Luo C, Wu X, Sun ZQ, Wang JL, Hu WD, Shen GZ. Characterization of atomic defects on the photoluminescence in two-dimensional materials using transmission electron microscope. InfoMat, 2019, 1(1): 85.

[29]

Fu KK, Cheng J, Li T, Hu LB. Flexible batteries: From mechanics to devices. ACS Energy Lett., 2016, 1(5): 1065.

[30]

L. Gao, Flexible device applications of 2D semiconductors, Small, 13(2017), No. 35, art. No. 1603994.

[31]

C. Xie and F. Yan, Flexible photodetectors based on novel functional materials, Small, 13(2017), No. 43, art. No. 1701822.

[32]

Zhu WN, Park S, Yogeesh MN, McNicholas KM, Bank SR, Akinwande D. Black phosphorus flexible thin film transistors at gighertz frequencies. Nano Lett., 2016, 16(4): 2301.

[33]

Wu LM, Shi JN, Zhou Z, Yan JH, Wang AW, Bian C, Ma JJ, Ma RS, Liu HT, Chen JC, Huang Y, Zhou W, Bao LH, Ouyang M, Pantelides ST, Gao HJ. InSe/hBN/graphite heterostructure for high-performance 2D electronics and flexible electronics. Nano Res., 2020, 13(4): 1127.

[34]

S. Conti, L. Pimpolari, G. Calabrese, R. Worsley, S. Majee, D.K. Polyushkin, M. Paur, S. Pace, D.H. Keum, F. Fabbri, G. Iannaccone, M. Macucci, C. Coletti, T. Mueller, C. Casiraghi, and G. Fiori, Low-voltage 2D materials-based printed field-effect transistors for integrated digital and analog electronics on paper, Nat. Commun., 11(2020), art. No. 3566.

[35]

Liu S, Liao QL, Lu SN, Zhang Z, Zhang GJ, Zhang Y. Strain modulation in graphene/ZnO nanorod film Schottky junction for enhanced photosensing performance. Adv. Funct. Mater., 2016, 26(9): 1347.

[36]

Du JL, Liao QL, Hong MY, Liu BS, Zhang XK, Yu HH, Xiao JK, Gao L, Gao FF, Kang Z, Zhang Z, Zhang Y. Piezotronic effect on interfacial charge modulation in mixed-dimensional van der Waals heterostructure for ultrasensitive flexible photodetectors. Nano Energy, 2019, 58, 85.

[37]

Q. Lian, X.T. Zhu, X.D. Wang, W. Bai, J. Yang, Y.Y. Zhang, R.J. Qi, R. Huang, W.D. Hu, X.D. Tang, J.L. Wang, and J.H. Chu, Ultrahigh-detectivity photodetectors with van der Waals epitaxial CdTe single-crystalline films, Small, 15(2019), No. 17, art. No. 1900236.

[38]

Du LN, Wang C, Fang JZ, Wei B, Xiong WQ, Wang XT, Ma LJ, Wang XF, Wei ZM, Xia CX, Li JB, Wang ZC, Zhang XZ, Liu Q. A ternary SnS1.26Se0.76 alloy for flexible broadband photodetectors. RSC Adv., 2019, 9(25): 14352.

[39]

J.L. Du, Q.L. Liao, B.S. Liu, X.K. Zhang, H.H. Yu, Y. Ou, J.K. Xiao, Z. Kang, H.N. Si, Z. Zhang, and Y. Zhang, Gate-controlled polarity-reversible photodiodes with ambipolar 2D semiconductors, Adv. Funct. Mater., 31(2021), No. 8, art. No. 2007559.

[40]

M.Z. Liao, Z. Wei, L.J. Du, Q.Q. Wang, J. Tang, H. Yu, F.F. Wu, J.J. Zhao, X.Z. Xu, B. Han, K.H. Liu, P. Gao, T. Polcar, Z.P. Sun, D.X. Shi, R. Yang, and G.Y. Zhang, Precise control of the interlayer twist angle in large scale MoS2 homostructures, Nat. Commun., 11(2020), art. No. 2153.

[41]

W.S. Zheng, T. Xie, Y. Zhou, Y.L. Chen, W. Jiang, S.L. Zhao, J.X. Wu, Y.M. Jing, Y. Wu, G.C. Chen, Y.F. Guo, J.B. Yin, S.Y. Huang, H.Q. Xu, Z.F. Liu, and H.L. Peng, Patterning two-dimensional chalcogenide crystals of Bi2Se3 and In2Se3 and efficient photodetectors, Nat. Commun., 6(2015), art. No. 6972.

[42]

Tamalampudi SR, Lu YY, Kumar UR, Sankar R, Liao CD, Moorthy BK, Cheng CH, Chou FC, Chen YT. High performance and bendable few-layered InSe photodetectors with broad spectral response. Nano Lett., 2014, 14(5): 2800.

[43]

Hu PA, Wang LF, Yoon M, Zhang J, Feng W, Wang XN, Wen ZZ, Idrobo JC, Miyamoto Y, Geohegan DB, Xiao K. Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates. Nano Lett., 2013, 13(4): 1649.

[44]

Wang ZX, Safdar M, Mirza M, Xu K, Wang QS, Huang Y, Wang FM, Zhan XY, He J. High-performance flexible photodetectors based on GaTe nanosheets. Nanoscale, 2015, 7(16): 7252.

[45]

Zhou YB, Nie YF, Liu YJ, Yan K, Hong JH, Jin CH, Zhou Y, Yin JB, Liu ZF, Peng HL. Epitaxy and photoresponse of two-dimensional GaSe crystals on flexible transparent mica sheets. ACS Nano, 2014, 8(2): 1485.

[46]

Zhou X, Zhang Q, Gan L, Li HQ, Zhai TY. Large-size growth of ultrathin SnS2 nanosheets and high performance for phototransistors. Adv. Funct. Mater., 2016, 26(24): 4405.

[47]

Y. Yan, W.Q. Xiong, S.S. Li, K. Zhao, X.T. Wang, J. Su, X.H. Song, X.P. Li, S. Zhang, H. Yang, X.F. Liu, L. Jiang, T.Y. Zhai, C.X. Xia, J.B. Li, and Z.M. Wei, Direct wide bandgap 2D GeSe2 monolayer toward anisotropic UV photodetection, Adv. Opt. Mater., 7(2019), No. 19, art. No. 1900622.

[48]

Hu XZ, Huang P, Liu KL, Jin B, Zhang X, Zhang XW, Zhou X, Zhai TY. Salt-assisted growth of ultrathin GeSe rectangular flakes for phototransistors with ultrahigh responsivity. ACS Appl. Mater. Interfaces, 2019, 11(26): 23353.

[49]

Chen GH, Yu YQ, Zheng K, Ding T, Wang WL, Jiang Y, Yang Q. Fabrication of ultrathin Bi2S3 nanosheets for high-performance, flexible, visible-NIR photodetectors. Small, 2015, 11(24): 2848.

[50]

Luo P, Zhuge FW, Wang FK, Lian LY, Liu KL, Zhang JB, Zhai TY. PbSe quantum dots sensitized high-mobility Bi2O2Se nanosheets for high-performance and broadband photodetection beyond 2 µm. ACS Nano, 2019, 13(8): 9028.

[51]

Tao YR, Chen JQ, Wu JJ, Wu Y, Wu XC. Flexible ultraviolet-visible photodetector based on HfS3 nanobelt film. J. Alloys Compd., 2016, 658, 6.

[52]

F.K. Wang, T. Gao, Q. Zhang, Z.Y. Hu, B. Jin, L. Li, X. Zhou, H.Q. Li, G. Van Tendeloo, and T.Y. Zhai, Liquid-alloy-assisted growth of 2D ternary Ga2In4S9 toward high-performance UV photodetection, Adv. Mater., 31(2019), No. 2, art. No. 1806306.

[53]

Wang QS, Xu K, Wang ZX, Wang F, Huang Y, Safdar M, Zhan XY, Wang FM, Cheng ZZ, He J. Van der Waals epitaxial ultrathin two-dimensional nonlayered semiconductor for highly efficient flexible optoelectronic devices. Nano Lett., 2015, 15(2): 1183.

[54]

Xia J, Zhao YX, Wang L, Li XZ, Gu YY, Cheng HQ, Meng XM. Van der Waals epitaxial two-dimensional CdSxSe(1−x) semiconductor alloys with tunable-composition and application to flexible optoelectronics. Nanoscale, 2017, 9(36): 13786.

[55]

Perumal P, Ulaganathan RK, Sankar R, Liao YM, Sun TM, Chu MW, Chou FC, Chen YT, Shih MH, Chen YF. Ultra-thin layered ternary single crystals [Sn(SxSe1−x)2] with bandgap engineering for high performance phototransistors on versatile substrates. Adv. Funct. Mater., 2016, 26(21): 3630.

[56]

Zheng ZQ, Yao JD, Yang GW. Centimeter-scale deposition of Mo0.5W0.5Se2 alloy film for high-performance photodetectors on versatile substrates. ACS Appl. Mater. Interfaces, 2017, 9(17): 14920.

[57]

Yao JD, Zheng ZQ, Yang GW. Promoting the performance of layered-material photodetectors by alloy engineering. ACS Appl. Mater. Interfaces, 2016, 8(20): 12915.

[58]

Liu Y, Huang Y, Duan XF. Van der Waals integration before and beyond two-dimensional materials. Nature, 2019, 567(7748): 323.

[59]

Y. Liu, N.O. Weiss, X.D. Duan, H.C. Cheng, Y. Huang, and X.F. Duan, Van der Waals heterostructures and devices, Nat. Rev. Mater., 1(2016), No. 9, art. No. 16042.

[60]

F. Zhou and W. Ji, Giant three-photon absorption in monolayer MoS2 and its application in near-infrared photodetection, Laser Photonics Rev., 11(2017), No. 4, art. No. 1700021.

[61]

Lee HS, Min SW, Chang YG, Park MK, Nam T, Kim H, Kim JH, Ryu S, Im S. MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett., 2012, 12(7): 3695.

[62]

Zhao WJ, Ribeiro RM, Toh M, Carvalho A, Kloc C, Neto AHC, Eda G. Origin of indirect optical transitions in few-layer MoS2, WS2, and WSe2. Nano Lett., 2013, 13(11): 5627.

[63]

Li TS, Li ML, Lin Y, Cai HB, Wu YM, Ding HY, Zhao SW, Pan N, Wang XP. Probing exciton complexes and charge distribution in inkslab-like WSe2 homojunction. ACS Nano, 2018, 12(5): 4959.

[64]

Wu D, Pak AJ, Liu YN, Zhou Y, Wu XY, Zhu YH, Lin M, Han Y, Ren Y, Peng HL, Tsai YH, Hwang GS, Lai KJ. Thickness-dependent dielectric constant of few-layer In2Se3 nanoflakes. Nano Lett., 2015, 15(12): 8136.

[65]

Ye L, Wang P, Luo WJ, Gong F, Liao L, Liu TD, Tong L, Zang JF, Xu JB, Hu WD. Highly polarization sensitive infrared photodetector based on black phosphorus-on-WSe2 photogate vertical heterostructure. Nano Energy, 2017, 37, 53.

[66]

L. Tong, X.Y. Huang, P. Wang, L. Ye, M. Peng, L.C. An, Q.D. Sun, Y. Zhang, G.M. Yang, Z. Li, F. Zhong, F. Wang, Y.X. Wang, M. Motlag, W.Z. Wu, G.J. Cheng, and W.D. Hu, Stable mid-infrared polarization imaging based on quasi-2D tellurium at room temperature, Nat. Commun., 11(2020), art. No. 2308.

[67]

Yang SX, Tongay S, Li Y, Yue Q, Xia JB, Li SS, Li JB, Wei SH. Layer-dependent electrical and optoelectronic responses of ReSe2 nanosheet transistors. Nanoscale, 2014, 6(13): 7226.

[68]

Liu JY, Zhou YH, Lin Y, Li ML, Cai HB, Liang YC, Liu MY, Huang ZG, Lai FC, Huang F, Zheng WF. Anisotropic photoresponse of the ultrathin GeSe nanoplates grown by rapid physical vapor deposition. ACS Appl. Mater. Interfaces, 2019, 11(4): 4123.

[69]

Y.H. Wang, J.B. Pang, Q.L. Cheng, L. Han, Y.F. Li, X. Meng, B. Ibarlucea, H.B. Zhao, F. Yang, H.Y. Liu, H. Liu, W.J. Zhou, X. Wang, M.H. Rummeli, Y. Zhang, and G. Cuniberti, Applications of 2D-layered palladium diselenide and its van der Waals heterostructures in electronics and optoelectronics, Nano-Micro Lett., 13(2021), No. 1, art. No. 143.

[70]

Reserbat-Plantey A, Kalita D, Han Z, Ferlazzo L, Autier-Laurent S, Komatsu K, Li C, Weil R, Ralko A, Marty L, Guéron S, Bendiab N, Bouchiat H, Bouchiat V. Strain superlattices and macroscale suspension of graphene induced by corrugated substrates. Nano Lett., 2014, 14(9): 5044.

[71]

Lee C, Wei XD, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321(5887): 385.

[72]

J.U. Lee, S. Woo, J. Park, H.C. Park, Y.W. Son, and H. Cheong, Strain-shear coupling in bilayer MoS2, Nat. Commun., 8(2017), art. No. 1370.

[73]

Liu BS, Liao QL, Zhang XK, Du JL, Ou Y, Xiao JK, Kang Z, Zhang Z, Zhang Y. Strain-engineered van der Waals interfaces of mixed-dimensional heterostructure arrays. ACS Nano, 2019, 13(8): 9057.

[74]

Bertolazzi S, Brivio J, Kis A. Stretching and breaking of ultrathin MoS2. ACS Nano, 2011, 5(12): 9703.

[75]

Castellanos-Gomez A, Poot M, Steele GA, van der Zant HSJ, Agraït N, Rubio-Bollinger G. Elastic properties of freely suspended MoS2 nanosheets. Adv. Mater., 2012, 24(6): 772.

[76]

R. Zhang, V. Koutsos, and R. Cheung, Elastic properties of suspended multilayer WSe2, Appl. Phys. Lett., 108(2016), No. 4, art. No. 042104.

[77]

J.Y. Wang, Y. Li, Z.Y. Zhan, T. Li, L. Zhen, and C.Y. Xu, Elastic properties of suspended black phosphorus nanosheets, Appl. Phys. Lett., 108(2016), No. 1, art. No. 013104.

[78]

Robertson J. Band offsets of wide-band-gap oxides and implications for future electronic devices. J. Vac. Sci. Technol. B, 2000, 18(3): 1785.

[79]

Jin CH, Ma EY, Karni O, Regan EC, Wang F, Heinz TF. Ultrafast dynamics in van der Waals heterostructures. Nat. Nanotechnol., 2018, 13(11): 994.

[80]

X. Xiong, J.Y. Kang, S.Y. Liu, A.Y. Tong, T.Y. Fu, X.F. Li, R. Huang, and Y.Q. Wu, Nonvolatile logic and ternary content-addressable memory based on complementary black phosphorus and rhenium disulfide transistors, Adv. Mater., (2021), art. No. 2106321.

[81]

Wang YA, Zheng Y, Gao J, Jin TY, Li EL, Lian X, Pan X, Han C, Chen HP, Chen W. Band-tailored van der Waals heterostructure for multilevel memory and artificial synapse. InfoMat, 2021, 3(8): 917.

[82]

Y. Cao, X.Y. Zhu, J.H. Jiang, C.Y. Liu, J. Zhou, J. Ni, J.J. Zhang, and J.B. Pang, Rotational design of charge carrier transport layers for optimal antimony trisulfide solar cells and its integration in tandem devices, Sol. Energy Mater. Sol. Cells, 206(2020), art. No. 110279.

[83]

Xiong X, Huang MQ, Hu B, Li XF, Liu F, Li SC, Tian MC, Li TY, Song J, Wu YQ. A transverse tunnelling field-effect transistor made from a van der Waals heterostructure. Nat. Electron., 2020, 3(2): 106.

[84]

Lin P, Zhu LP, Li D, Xu L, Wang ZL. Tunable WSe2—CdS mixed-dimensional van der Waals heterojunction with a piezo-phototronic effect for an enhanced flexible photodetector. Nanoscale, 2018, 10(30): 14472.

[85]

H.L. Wu, Z. Kang, Z.H. Zhang, Z. Zhang, H.N. Si, Q.L. Liao, S.C. Zhang, J. Wu, X.K. Zhang, and Y. Zhang, Interfacial charge behavior modulation in perovskite quantum dot-monolayer MoS2 0D-2D mixed-dimensional van der Waals heterostructures, Adv. Funct. Mater., 28(2018), No. 34, art. No. 1802015.

[86]

X.K. Zhang, B.S. Liu, L. Gao, H.H. Yu, X.Z. Liu, J.L. Du, J.K. Xiao, Y.H. Liu, L. Gu, Q.L. Liao, Z. Kang, Z. Zhang, and Y. Zhang, Near-ideal van der Waals rectifiers based on all-two-dimensional Schottky junctions, Nat. Commun., 12(2021), art. No. 1522.

[87]

Schwierz F. Graphene transistors. Nat. Nanotechnol., 2010, 5(7): 487.

[88]

Y. Liu, J. Guo, W.J. Song, P.Q. Wang, V. Gambin, Y. Huang, and X.F. Duan, Ultra-steep slope impact ionization transistors based on graphene/InAs heterostructures, Small Struct., 2(2021), No. 1, art. No. 2000039.

[89]

Kim BJ, Jang H, Lee SK, Hong BH, Ahn JH, Cho JH. High-performance flexible graphene field effect transistors with ion gel gate dielectrics. Nano Lett., 2010, 10(9): 3464.

[90]

Lee SK, Kim BJ, Jang H, Yoon SC, Lee CJ, Hong BH, Rogers JA, Cho JH, Ahn JH. Stretchable graphene transistors with printed dielectrics and gate electrodes. Nano Lett., 2011, 11(11): 4642.

[91]

Lee J, Ha TJ, Li HF, Parrish KN, Holt M, Dodabalapur A, Ruoff RS, Akinwande D. 25 GHz embedded-gate graphene transistors with high-k dielectrics on extremely flexible plastic sheets. ACS Nano, 2013, 7(9): 7744.

[92]

Zhao CS, Tan CL, Lien DH, Song XH, Amani M, Hettick M, Nyein HYY, Yuan Z, Li L, Scott MC, Javey A. Evaporated tellurium thin films for p-type field-effect transistors and circuits. Nat. Nanotechnol., 2020, 15(1): 53.

[93]

Jang H, Park YJ, Chen X, Das T, Kim MS, Ahn JH. Graphene-based flexible and stretchable electronics. Adv. Mater., 2016, 28(22): 4184.

[94]

Fiori G, Bonaccorso F, Iannaccone G, Palacios T, Neumaier D, Seabaugh A, Banerjee SK, Colombo L. Electronics based on two-dimensional materials. Nat. Nanotechnol., 2014, 9(10): 768.

[95]

Hosseini M, Elahi M, Pourfath M, Esseni D. Strain-induced modulation of electron mobility in single-layer transition metal dichalcogenides MX2 (M = Mo, W; X = S, Se). IEEE Trans. Electron Devices, 2015, 62(10): 3192.

[96]

Xiao JK, Kang Z, Liu BS, Zhang XK, Du JL, Chen KL, Yu HH, Liao QL, Zhang Z, Zhang Y. Record-high saturation current in end-bond contacted monolayer MoS2 transistors. Nano Res., 2022, 15(1): 475.

[97]

Pu J, Yomogida Y, Liu KK, Li LJ, Iwasa Y, Takenobu T. Highly flexible MoS2 thin-film transistors with ion gel dielectrics. Nano Lett., 2012, 12(8): 4013.

[98]

Chang HY, Yang SX, Lee J, Tao L, Hwang WS, Jena D, Lu NS, Akinwande D. High-performance, highly bendable MoS2 transistors with high-k dielectrics for flexible low-power systems. ACS Nano, 2013, 7(6): 5446.

[99]

Song WG, Kwon HJ, Park J, Yeo J, Kim M, Park S, Yun S, Kyung KU, Grigoropoulos CP, Kim S, Hong YK. High-performance flexible multilayer MoS2 transistors on solution-based polyimide substrates. Adv. Funct. Mater., 2016, 26(15): 2426.

[100]

Rhyee JS, Kwon J, Dak P, Kim JH, Kim SM, Park J, Hong YK, Song WG, Omkaram I, Alam MA, Kim S. High-mobility transistors based on large-area and highly crystalline CVD-grown MoSe2 films on insulating substrates. Adv. Mater., 2016, 28(12): 2316.

[101]

Zhu WN, Yogeesh MN, Yang SX, Aldave SH, Kim JS, Sonde S, Tao L, Lu NS, Akinwande D. Flexible black phosphorus ambipolar transistors, circuits and AM demodulator. Nano Lett., 2015, 15(3): 1883.

[102]

K.S. Novoselov, A. Mishchenko, A. Carvalho, and A.H.C. Neto, 2D materials and van der Waals heterostructures, Science, 353(2016), No. 6298, art. No. aac9439.

[103]

Petrone N, Chari T, Meric I, Wang L, Shepard KL, Hone J. Flexible graphene field-effect transistors encapsulated in hexagonal boron nitride. ACS Nano, 2015, 9(9): 8953.

[104]

Yoon J, Park W, Bae GY, Kim Y, Jang HS, Hyun Y, Lim SK, Kahng YH, Hong WK, Lee BH, Ko HC. Highly flexible and transparent multilayer MoS2 transistors with graphene electrodes. Small, 2013, 9(19): 3295.

[105]

Lee GH, Yu YJ, Cui X, Petrone N, Lee CH, Choi MS, Lee DY, Lee C, Yoo WJ, Watanabe K, Taniguchi T, Nuckolls C, Kim P, Hone J. Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. ACS Nano, 2013, 7(9): 7931.

[106]

Liu S, Liao QL, Lu SN, Zhang XH, Zhang Z, Zhang GJ, Zhang Y. Triboelectricity-assisted transfer of graphene for flexible optoelectronic applications. Nano Res., 2016, 9(4): 899.

[107]

K.F. Mak, C. Lee, J. Hone, J. Shan, and T.F. Heinz, Atomically thin MoS2: A new direct-gap semiconductor, Phys. Rev. Lett., 105(2010), No. 13, art. No. 136805.

[108]

Wang L, Xu XZ, Zhang LN, Qiao RX, Wu MH, Wang ZC, Zhang S, Liang J, Zhang ZH, Zhang ZB, Chen W, Xie XD, Zong JY, Shan YW, Guo Y, Willinger M, Wu H, Li QY, Wang WL, Gao P, Wu SW, Zhang Y, Jiang Y, Yu DP, Wang EG, Bai XD, Wang ZJ, Ding F, Liu KH. Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper. Nature, 2019, 570(7759): 91.

[109]

S.K. Su, C.P. Chuu, M.Y. Li, C.C. Cheng, H.S.P. Wong, and L.J. Li, Layered semiconducting 2D materials for future transistor applications, Small Struct., 2(2021), No. 5, art. No. 2000103.

[110]

Zhao M, Ye Y, Han YM, Xia Y, Zhu HY, Wang SQ, Wang Y, Muller DA, Zhang X. Large-scale chemical assembly of atomically thin transistors and circuits. Nat. Nanotechnol., 2016, 11(11): 954.

[111]

Das T, Chen X, Jang H, Oh IK, Kim H, Ahn JH. Highly flexible hybrid CMOS inverter based on Si nanomembrane and molybdenum disulfide. Small, 2016, 12(41): 5720.

[112]

Pu J, Funahashi K, Chen CH, Li MY, Li LJ, Takenobu T. Highly flexible and high-performance complementary inverters of large-area transition metal dichalcogenide monolayers. Adv. Mater., 2016, 28(21): 4111.

[113]

Shi HW, Ding L, Zhong DL, Han J, Liu LJ, Xu L, Sun PK, Wang H, Zhou JS, Fang L, Zhang ZY, Peng LM. Radiofrequency transistors based on aligned carbon nanotube arrays. Nat. Electron., 2021, 4(6): 405.

[114]

W.N. Zhu, S. Park, M.N. Yogeesh, and D. Akinwande, Advancements in 2D flexible nanoelectronics: From material perspectives to RF applications, Flexible Printed Electron., 2(2017), No. 4, art. No. 043001.

[115]

J. Lee, H.Y. Chang, T.J. Ha, H.F. Li, R.S. Ruoff, A. Dodabalapur, and D. Akinwande, High-performance flexible nanoelectronics: 2D atomic channel materials for low-power digital and high-frequency analog devices, [in] 2013 IEEE International Electron Devices Meeting, Washington, 2013. p. 19.2.1.

[116]

Cheng R, Bai JW, Liao L, Zhou HL, Chen Y, Liu LX, Lin YC, Jiang S, Huang Y, Duan XF. High-frequency self-aligned graphene transistors with transferred gate stacks. PNAS, 2012, 109(29): 11588.

[117]

Park S, Shin SH, Yogeesh MN, Lee AL, Rahimi S, Akinwande D. Extremely high-frequency flexible graphene thin-film transistors. IEEE Electron Device Lett., 2016, 37(4): 512.

[118]

S. Park, W.N. Zhu, H.Y. Chang, M.N. Yogeesh, R. Ghosh, S.K. Banerjee, and D. Akinwande, High-frequency prospects of 2D nanomaterials for flexible nanoelectronics from baseband to sub-THz devices, [in] 2015 IEEE International Electron Devices Meeting, Washington, 2015, p. 32.1.1.

[119]

Chang HY, Yogeesh MN, Ghosh R, Rai A, Sanne A, Yang SX, Lu NS, Banerjee SK, Akinwande D. Large-area monolayer MoS2 for flexible low-power RF nanoelectronics in the GHz regime. Adv. Mater., 2016, 28(9): 1818.

[120]

Zhang X, Grajal J, Vazquez-Roy JL, Radhakrishna U, Wang XX, Chern W, Zhou L, Lin YX, Shen PC, Ji X, Ling X, Zubair A, Zhang YH, Wang H, Dubey M, Kong J, Dresselhaus M, Palacios T. Two-dimensional MoS2-enabled flexible rectenna for Wi-Fi-band wireless energy harvesting. Nature, 2019, 566(7744): 368.

[121]

Gund GS, Jung MG, Shin KY, Park HS. Two-dimensional metallic niobium diselenide for sub-micrometer-thin antennas in wireless communication systems. ACS Nano, 2019, 13(12): 14114.

[122]

L. Wang, W.G. Liao, S.L. Wong, Z.G. Yu, S.F. Li, Y.F. Lim, X.W. Feng, W.C. Tan, X. Huang, L. Chen, L. Liu, J.S. Chen, X. Gong, C.X. Zhu, X.K. Liu, Y.W. Zhang, D.Z. Chi, and K.W. Ang, Artificial synapses based on multiterminal memtransistors for neuromorphic application, Adv. Funct. Mater., 29(2019), No. 25, art. No. 1901106.

[123]

J.L. Wen, W.H. Tang, Z. Kang, Q.L. Liao, M.Y. Hong, J.L. Du, X.K. Zhang, H.H. Yu, H.N. Si, Z. Zhang, and Y. Zhang, Direct charge trapping multilevel memory with graphdiyne/MoS2 van der Waals heterostructure, Adv. Sci., 8(2021), No. 21, art. No. 2101417.

[124]

X.W. Feng, Y.D. Li, L. Wang, S. Chen, Z.G. Yu, W.C. Tan, N. Macadam, G.H. Hu, L. Huang, L. Chen, X. Gong, D.Z. Chi, T. Hasan, A.V.Y. Thean, Y.W. Zhang, and K.W. Ang, A fully printed flexible MoS2 memristive artificial synapse with femtojoule switching energy, Adv. Electron. Mater., 5(2019), No. 12, art. No. 1900740.

[125]

Wan CJ, Liu YH, Feng P, Wang W, Zhu LQ, Liu ZP, Shi Y, Wan Q. Flexible metal oxide/graphene oxide hybrid neuromorphic transistors on flexible conducting graphene substrates. Adv. Mater., 2016, 28(28): 5878.

[126]

B.J. Sun, J.B. Pang, Q.L. Cheng, S. Zhang, Y.F. Li, C.C. Zhang, D.H. Sun, B. Ibarlucea, Y. Li, D. Chen, H.M. Fan, Q.F. Han, M.X. Chao, H. Liu, J.G. Wang, G. Cuniberti, L. Han, and W.J. Zhou, Synthesis of wafer-scale graphene with chemical vapor deposition for electronic device applications, Adv. Mater. Technol., 6(2021), No. 7, art. No. 2000744.

[127]

Y.H. Wang, Y.H. Zhang, Q.L. Cheng, J.B. Pang, Y.J. Chu, H. Ji, J.W. Gao, Y.K. Han, L. Han, H. Liu, and Y. Zhang, Large area uniform PtSx synthesis on sapphire substrate for performance improved photodetectors, Appl. Mater. Today, 25(2021), art. No. 101176.

[128]

J. Zhou, H.B. Chen, X.T. Zhang, K.L. Chi, Y.M. Cai, Y. Cao, and J.B. Pang, Substrate dependence on (Sb4Se6)n ribbon orientations of antimony selenide thin films: Morphology, carrier transport and photovoltaic performance, J. Alloys Compd., 862(2021), art. No. 158703.

[129]

Zheng BY, Li D, Zhu CG, Lan JY, Sun XX, Zheng WH, Liu HW, Zhang XH, Zhu XL, Feng YX, Xu T, Sun LT, Xu GZ, Wang X, Ma C, Pan AL. Dual-channel type tunable field-effect transistors based on vertical bilayer WS2(1−x)Se2x/SnS2 heterostructures. InfoMat, 2020, 2(4): 752.

[130]

Liu YJ, Liu YD, Qin SC, Xu YB, Zhang R, Wang FQ. Graphene-carbon nanotube hybrid films for high-performance flexible photodetectors. Nano Res., 2017, 10(6): 1880.

[131]

Jang S, Hwang E, Lee Y, Lee S, Cho JH. Multifunctional graphene optoelectronic devices capable of detecting and storing photonic signals. Nano Lett., 2015, 15(4): 2542.

[132]

De Fazio D, Goykhman I, Yoon D, Bruna M, Eiden A, Milana S, Sassi U, Barbone M, Dumcenco D, Marinov K, Kis A, Ferrari AC. High responsivity, large-area graphene/MoS2 flexible photodetectors. ACS Nano, 2016, 10(9): 8252.

[133]

W.Z. Yu, S.J. Li, Y.P. Zhang, W.L. Ma, T. Sun, J. Yuan, K. Fu, and Q.L. Bao, Near-infrared photodetectors based on MoTe2/graphene heterostructure with high responsivity and flexibility, Small, 13(2017), No. 24, art. No. 1700268.

[134]

D.B. Velusamy, R.H. Kim, S. Cha, J. Huh, R. Khazaeinezhad, S.H. Kassani, G. Song, S.M. Cho, S.H. Cho, I. Hwang, J. Lee, K. Oh, H. Choi, and C. Park, Flexible transition metal dichalcogenide nanosheets for band-selective photodetection, Nat. Commun., 6(2015), art. No. 8063.

[135]

Lim YR, Song W, Han JK, Lee YB, Kim SJ, Myung S, Lee SS, An KS, Choi CJ, Lim J. Wafer-scale, homogeneous MoS2 layers on plastic substrates for flexible visible-light photodetectors. Adv. Mater., 2016, 28(25): 5025.

[136]

Lan CY, Zhou ZY, Zhou ZF, Li C, Shu L, Shen LF, Li DP, Dong RT, Yip S, Ho JC. Wafer-scale synthesis of monolayer WS2 for high-performance flexible photodetectors by enhanced chemical vapor deposition. Nano Res., 2018, 11(6): 3371.

[137]

Ajayan P, Kim P, Banerjee K. Two-dimensional van der Waals materials. Phys. Today, 2016, 69(9): 38.

[138]

Allain A, Kang JH, Banerjee K, Kis A. Electrical contacts to two-dimensional semiconductors. Nat. Mater., 2015, 14(12): 1195.

[139]

Xu Y, Cheng C, Du SC, Yang JY, Yu B, Luo J, Yin WY, Li EP, Dong SR, Ye PD, Duan XF. Contacts between two- and three-dimensional materials: Ohmic, Schottky, and p-n heterojunctions. ACS Nano, 2016, 10(5): 4895.

[140]

A.S. Aji, P. Solís-Fernández, H.G. Ji, K. Fukuda, and H. Ago, High mobility WS2 transistors realized by multilayer graphene electrodes and application to high responsivity flexible photodetectors, Adv. Funct. Mater., 27(2017), No. 47, art. No. 1703448.

[141]

Xue YZ, Zhang YP, Liu Y, Liu HT, Song JC, Sophia J, Liu JY, Xu ZQ, Xu QY, Wang ZY, Zheng JL, Liu YQ, Li SJ, Bao QL. Scalable production of a few-layer MoS2/WS2 vertical heterojunction array and its application for photodetectors. ACS Nano, 2016, 10(1): 573.

[142]

D.B. Velusamy, M.A. Haque, M.R. Parida, F. Zhang, T. Wu, O.F. Mohammed, and H.N. Alshareef, 2D organic-inorganic hybrid thin films for flexible UV-visible photodetectors, Adv. Funct. Mater., 27(2017), No. 15, art. No. 1605554.

[143]

Z.Q. Zheng, T.M. Zhang, J.D. Yao, Y. Zhang, J.R. Xu, and G.W. Yang, Flexible, transparent and ultra-broadband photodetector based on large-area WSe2 film for wearable devices, Nanotechnology, 27(2016), No. 22, art. No. 225501.

[144]

Lu NS, Suo ZG, Vlassak JJ. The effect of film thickness on the failure strain of polymer-supported metal films. Acta Mater., 2010, 58(5): 1679.

[145]

Lee SK, Jang HY, Jang S, Choi E, Hong BH, Lee J, Park S, Ahn JH. All graphene-based thin film transistors on flexible plastic substrates. Nano Lett., 2012, 12(7): 3472.

AI Summary AI Mindmap
PDF

114

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/