A review on the critical challenges and progress of SiO x-based anodes for lithium-ion batteries

Nana Yao , Yu Zhang , Xianhui Rao , Zhao Yang , Kun Zheng , Konrad Świerczek , Hailei Zhao

International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (4) : 876 -895.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (4) : 876 -895. DOI: 10.1007/s12613-022-2422-7
Invited Review

A review on the critical challenges and progress of SiO x-based anodes for lithium-ion batteries

Author information +
History +
PDF

Abstract

With the advantages of abundant resources, high specific capacity, and relatively stable cycling performance, silicon suboxides (SiO x, x < 2) have been recently suggested as promising anodes for next-generation lithium-ion batteries (LIBs). SiO x exhibits superior storage capability because of the presence of silicon and smaller volume change upon charge/discharge than Si owing to the buffering effect of the initial lithiation products of inert lithium oxide and lithium silicates, enabling a stable cycle life of electrodes. However, significant improvements, such as overcoming issues related to volume changes in cycling and initial irreversible capacity loss and enhancing the ionic and electronic charge transport in poorly conducting SiO x electrodes, are still needed to achieve the satisfactory performance required for commercial applications. This review summarizes recent progress on the cycling performance and initial coulombic efficiency of SiO x. Advances in the design of particle morphology and composite composition, prelithiation and prereduction methods, and usage of electrolyte additives and optimized electrode binders are discussed. Perspectives on the promising research directions that might lead to further improvement of the electrochemical properties of SiO x-based anodes are noted. This paper can serve as a basis for the research and development of high-energy-density LIBs.

Keywords

silicon suboxides / preparation / structural optimization / anode / lithium-ion batteries

Cite this article

Download citation ▾
Nana Yao, Yu Zhang, Xianhui Rao, Zhao Yang, Kun Zheng, Konrad Świerczek, Hailei Zhao. A review on the critical challenges and progress of SiO x-based anodes for lithium-ion batteries. International Journal of Minerals, Metallurgy, and Materials, 2022, 29(4): 876-895 DOI:10.1007/s12613-022-2422-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kim TH, Park JS, Chang SK, Choi S, Ryu JH, Song HK. The current move of lithium ion batteries towards the next phase. Adv. Energy Mater., 2012, 2(7): 860.

[2]

Blomgren GE. The development and future of lithium ion batteries. J. Electrochem. Soc., 2016, 164(1): A5019.

[3]

Yamada Y, Usui K, Chiang CH, Kikuchi K, Furukawa K, Yamada A. General observation of lithium intercalation into graphite in ethylene-carbonate-free superconcentrated electrolytes. ACS Appl. Mater. Interfaces, 2014, 6(14): 10892.

[4]

W.H. Li, X.L. Sun, and Y. Yu, Si-, Ge-, Sn-based anode materials for lithium-ion batteries: From structure design to electrochemical performance, Small Methods, 1(2017), No. 3, art. No. 1600037.

[5]

D.Q. Liu, Z.J. Liu, X.W. Li, W.H. Xie, Q. Wang, Q.M. Liu, Y.J. Fu, and D.Y. He, Group IVA element (Si, Ge, Sn)-based alloying/dealloying anodes as negative electrodes for full-cell lithium-ion batteries, Small, 13(2017), No. 45, art. No. 1702000.

[6]

Radvanyi E, Porcher W, Vito ED, Montani A, Franger S, Jouanneau Si Larbi S. Failure mechanisms of nano-silicon anodes upon cycling: An electrode porosity evolution model. Phys. Chem. Chem. Phys., 2014, 16(32): 17142.

[7]

McDowell MT, Lee SW, Nix WD, Cui Y. 25th anniversary article: Understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries. Adv. Mater., 2013, 25(36): 4966.

[8]

Feng ZY, Peng WJ, Wang ZX, Guo HJ, Li XH, Yan GC, Wang JX. Review of silicon-based alloys for lithium-ion battery anodes. Int. J. Miner. Metall. Mater., 2021, 28(10): 1549.

[9]

D.A. Agyeman, K. Song, G.H. Lee, M. Park, and Y.M. Kang, Carbon-coated Si nanoparticles anchored between reduced graphene oxides as an extremely reversible anode material for high energy-density Li-ion battery, Adv. Energy Mater., 6(2016), No. 20, art. No. 1600904.

[10]

Kasavajjula U, Wang CS, Appleby AJ. Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J. Power Sources, 2007, 163(2): 1003.

[11]

Q. Liu, Z. Cui, R.J. Zou, J.H. Zhang, K.B. Xu, and J.Q. Hu, Surface coating constraint induced anisotropic swelling of silicon in Si—void@SiOx nanowire anode for lithium-ion batteries, Small, 13(2017), No. 13, art. No. 1603754.

[12]

W.F. Ren, Y.H. Wang, Q.Q. Tan, J. Yu, U.J. Etim, Z.Y. Zhong, and F.B. Su, Nanosized Si particles with rich surface organic functional groups as high-performance Li-battery anodes, Electrochim. Acta, 320(2019), art. No. 134625.

[13]

Chen MX, Cao WY, Wang LC, Ma X, Han K. Chessboard-like silicon/graphite anodes with high cycling stability toward practical lithium-ion batteries. ACS Appl. Energy Mater., 2021, 4(1): 775.

[14]

Jia HP, Stock C, Kloepsch R, He X, Badillo JP, Fromm O, Vortmann B, Winter M, Placke T. Facile synthesis and lithium storage properties of a porous NiSi2/Si/carbon composite anode material for lithium-ion batteries. ACS Appl. Mater. Interfaces, 2015, 7(3): 1508.

[15]

Du QK, Wu QX, Wang HX, Meng XJ, Ji ZK, Zhao S, Zhu WW, Liu C, Ling M, Liang CD. Carbon dot-modified silicon nanoparticles for lithium-ion batteries. Int. J. Miner. Metall. Mater., 2021, 28(10): 1603.

[16]

S. Kim, Y.K. Jeong, Y. Wang, H. Lee, and J.W. Choi, A “sticky” mucin-inspired DNA-polysaccharide binder for silicon and silicon-graphite blended anodes in lithium-ion batteries, Adv. Mater., 30(2018), No. 26, art. No. 1707594.

[17]

Xiong JH, Dupré N, Mazouzi D, Guyomard D, Roué L, Lestriez B. Influence of the polyacrylic acid binder neutralization degree on the initial electrochemical behavior of a silicon/graphite electrode. ACS Appl. Mater. Interfaces, 2021, 13(24): 28304.

[18]

M. Miyachi, H. Yamamoto, and H. Kawai, Electrochemical properties and chemical structures of metal-doped SiO anodes for Li-ion rechargeable batteries, J. Electrochem. Soc., 154(2007), No. 4, art. No. A376.

[19]

Takezawa H, Iwamoto K, Ito S, Yoshizawa H. Electrochemical behaviors of nonstoichiometric silicon suboxides (Si-Ox) film prepared by reactive evaporation for lithium rechargeable batteries. J. Power Sources, 2013, 244, 149.

[20]

Jung SC, Kim HJ, Kim JH, Han YK. Atomic-level understanding toward a high-capacity and high-power silicon oxide (SiO) material. J. Phys. Chem. C, 2016, 120(2): 886.

[21]

P.P. Lü, H.L. Zhao, Z.L. Li, C.H. Gao, and Y. Zhang, Citrate-nitrate gel combustion synthesis of micro/nanostructured SiOx/C composite as high-performance lithium-ion battery anode, Solid State Ionics, 340(2019), art. No. 115024.

[22]

Guo H, Mao R, Yang XJ, Chen J. Hollow nanotubular SiOx templated by cellulose fibers for lithium ion batteries. Electrochim. Acta, 2012, 74, 271.

[23]

H.Q. Wang, X.Q. Que, Y.N. Liu, X.X. Wu, Q.H. Yuan, J.Y. Lu, and W. Gan, Facile synthesis of yolk-shell structured Si-Ox/C@void@C nanospheres as anode for lithium-ion batteries, J. Alloys Compd., 874(2021), art. No. 159913.

[24]

Zhang WJ, Weng YQ, Shen WC, RT, Kang FY, Huang ZH. Scalable synthesis of lotus-seed-pod-like Si/Si-Ox@CNF: Applications in freestanding electrode and flexible full lithium-ion batteries. Carbon, 2020, 158, 163.

[25]

Cai YJ, Li YY, Jin BY, Ali A, Ling M, Cheng DG, Lu JG, Hou Y, He QG, Zhan XL, Chen FQ, Zhang QH. Dual cross-linked fluorinated binder network for high-performance silicon and silicon oxide based anodes in lithium-ion batteries. ACS Appl. Mater. Interfaces, 2019, 11(50): 46800.

[26]

S.T. Guo, H. Li, Y.Q. Li, Y. Han, K.B. Chen, G.Z. Xu, Y.J. Zhu, and X.L. Hu, SiO2-enhanced structural stability and strong adhesion with a new binder of konjac glucomannan enables stable cycling of silicon anodes for lithium-ion batteries, Adv. Energy Mater., 8(2018), No. 24, art. No. 1800434.

[27]

J. Kirner, Y. Qin, L.H. Zhang, A. Jansen, and W.Q. Lu, Optimization of Graphite-SiO blend electrodes for lithium-ion batteries: Stable cycling enabled by single-walled carbon nanotube conductive additive, J. Power Sources, 450(2020), art. No. 227711.

[28]

Philipp HR. Optical properties of non-crystalline Si, SiO, Si-Ox and SiO2. J. Phys. Chem. Solids, 1971, 32(8): 1935.

[29]

Philipp HR. Optical and bonding model for non-crystalline SiOx and SiOxNy materials. J. Non Cryst. Solids, 1972, 8–10, 627.

[30]

Temkin RJ. An analysis of the radial distribution function of SiOx. J. Non Cryst. Solids, 1975, 17(2): 215.

[31]

Nakamura M, Mochizuki Y, Usami K, Itoh Y, Nozaki T. Infrared absorption spectra and compositions of evaporated silicon oxides (SiOx). Solid State Commun., 1984, 50(12): 1079.

[32]

Schulmeister K, Mader W. TEM investigation on the structure of amorphous silicon monoxide. J. Non-Cryst. Solids, 2003, 320(1–3): 143.

[33]

Hohl A, Wieder T, van Aken PA, Weirich TE, Denninger G, Vidal M, Oswald S, Deneke C, Mayer J, Fuess H. An interface clusters mixture model for the structure of amorphous silicon monoxide (SiO). J. Non Cryst. Solids, 2003, 320(1–3): 255.

[34]

Kim JH, Park CM, Kim H, Kim YJ, Sohn HJ. Electrochemical behavior of SiO anode for Li secondary batteries. J. Electroanal. Chem., 2011, 661(1): 245.

[35]

A. Hirata, S. Kohara, T. Asada, M. Arao, C. Yogi, H. Imai, Y.W. Tan, T. Fujita and M.W. Chen, Atomic-scale disproportionation in amorphous silicon monoxide, Nat. Commun., 7(2016), art. No. 11591.

[36]

Yao Y, Zhang JJ, Xue LG, Huang T, Yu AS. Carbon-coated SiO2 nanoparticles as anode material for lithium ion batteries. J. Power Sources, 2011, 196(23): 10240.

[37]

Guo BK, Shu J, Wang ZX, Yang H, Shi LH, Liu YN, Chen LQ. Electrochemical reduction of nano-SiO2 in hard carbon as anode material for lithium ion batteries. Electrochem. Commun., 2008, 10(12): 1876.

[38]

Sun Q, Zhang B, Fu ZW. Lithium electrochemistry of SiO2 thin film electrode for lithium-ion batteries. Appl. Surf. Sci., 2008, 254(13): 3774.

[39]

T. Kim, S. Park, and S.M. Oh, Solid-state NMR and electrochemical dilatometry study on Li+ uptake/extraction mechanism in SiO electrode, J. Electrochem. Soc., 154(2007), No. 12, art. No. A1112.

[40]

Y. Yamada, Y. Iriyama, T. Abe, and Z. Ogumi, Kinetics of electrochemical insertion and extraction of lithium ion at SiO, J. Electrochem. Soc., 157(2010), No. 1, art. No. A26.

[41]

Yamada M, Inaba A, Ueda A, Matsumoto K, Iwasaki T, Ohzuku T. Reaction mechanism of “SiO”-carbon composite-negative electrode for high-capacity lithium-ion batteries. J. Electrochem. Soc., 2012, 159(10): A1630.

[42]

Jung H, Yeo BC, Lee KR, Han SS. Atomistics of the lithiation of oxidized silicon (SiOx) nanowires in reactive molecular dynamics simulations. Phys. Chem. Chem. Phys., 2016, 18(47): 32078.

[43]

Yamamura H, Nobuhara K, Nakanishi S, Iba H, Okada S. Investigation of the irreversible reaction mechanism and the reactive trigger on SiO anode material for lithium-ion battery. J. Ceram. Soc. Jpn., 2011, 119(1395): 855.

[44]

Yu BC, Hwa Y, Kim JH, Sohn HJ. A new approach to synthesis of porous SiOx anode for Li-ion batteries via chemical etching of Si crystallites. Electrochim. Acta, 2014, 117, 426.

[45]

B.C. Yu, Y. Hwa, C.M. Park, and H.J. Sohn, Reaction mechanism and enhancement of cyclability of SiO anodes by surface etching with NaOH for Li-ion batteries, J. Mater. Chem. A, 1(2013), No. 15, art. No. 4820.

[46]

M. Miyachi, H. Yamamoto, H. Kawai, T. Ohta, and M. Shirakata, Analysis of SiO anodes for lithium-ion batteries, J. Electrochem. Soc., 152(2005), No. 10, art. No. A2089.

[47]

Veluchamy A, Doh CH, Kim DH, Lee JH, Lee DJ, Ha KH, Shin HM, Jin BS, Kim HS, Moon SI, Park CW. Improvement of cycle behaviour of SiO/C anode composite by thermochemically generated Li4SiO4 inert phase for lithium batteries. J. Power Sources, 2009, 188(2): 574.

[48]

Yang XL, Wen ZY, Xu XX, Lin B, Huang SH. Nanosized silicon-based composite derived by in situ mechanochemical reduction for lithium ion batteries. J. Power Sources, 2007, 164(2): 880.

[49]

Chen T, Wu J, Zhang QL, Su X. Recent advancement of SiOx based anodes for lithium-ion batteries. J. Power Sources, 2017, 363, 126.

[50]

Liu ZH, Yu Q, Zhao YL, He RH, Xu M, Feng SH, Li SD, Zhou L, Mai LQ. Silicon oxides: A promising family of anode materials for lithium-ion batteries. Chem. Soc. Rev., 2019, 48(1): 285.

[51]

Wang T, Guo XT, Duan HY, Chen CY, Pang H. SiO-based (0 < x ≤ 2) composites for lithium-ion batteries. Chin. Chem. Lett., 2020, 31(3): 654.

[52]

Hwa Y, Park CM, Sohn HJ. Modified SiO as a high performance anode for Li-ion batteries. J. Power Sources, 2013, 222, 129.

[53]

Lee JK, Yoon WY, Kim BK. Kinetics of reaction products of silicon monoxide with controlled amount of Li-ion insertion at various current densities for Li-ion batteries. J. Electrochem. Soc., 2014, 161(6): A927.

[54]

W.S. Chang, C.M. Park, J.H. Kim, Y.U. Kim, G. Jeong, and H.J. Sohn, Quartz (SiO2): A new energy storage anode material for Li-ion batteries, Energy Environ. Sci., 5(2012), No. 5, art. No. 6895.

[55]

Yasuda K, Kashitani Y, Kizaki S, Takeshita K, Fujita T, Shimosaki S. Thermodynamic analysis and effect of crystallinity for silicon monoxide negative electrode for lithium ion batteries. J. Power Sources, 2016, 329, 462.

[56]

M. Yamada, A. Ueda, K. Matsumoto, and T. Ohzuku, Silicon-based negative electrode for high-capacity lithium-ion batteries: “SiO” -carbon composite, J. Electrochem. Soc., 158(2011), No. 4, art. No. A417.

[57]

Tashiro T, Dougakiuchi M, Kambara M. Instantaneous formation of SiOx nanocomposite for high capacity lithium ion batteries by enhanced disproportionation reaction during plasma spray physical vapor deposition. Sci. Technol. Adv. Mater., 2016, 17(1): 744.

[58]

Liu ZH, Guan DD, Yu Q, Xu L, Zhuang ZC, Zhu T, Zhao DY, Zhou L, Mai LQ. Monodisperse and homogeneous SiOx/C microspheres: A promising high-capacity and durable anode material for lithium-ion batteries. Energy Storage Mater., 2018, 13, 112.

[59]

Guo CF, Wang DL, Liu TF, Zhu JS, Lang XS. A three dimensional SiOx/C@RGO nanocomposite as a high energy anode material for lithium-ion batteries. J. Mater. Chem. A, 2014, 2(10): 3521.

[60]

Wu WJ, Shi J, Liang YH, Liu F, Peng Y, Yang HB. A low-cost and advanced SiOx—C composite with hierarchical structure as an anode material for lithium-ion batteries. Phys. Chem. Chem. Phys., 2015, 17(20): 13451.

[61]

Park MS, Park E, Lee J, Jeong G, Kim KJ, Kim JH, Kim YJ, Kim H. Hydrogen silsequioxane-derived Si/SiOx nanospheres for high-capacity lithium storage materials. ACS Appl. Mater. Interfaces, 2014, 6(12): 9608.

[62]

Cao YD, Bennett JC, Dunlap RA, Obrovac MN. A simple synthesis route for high-capacity SiOx anode materials with tunable oxygen content for lithium-ion batteries. Chem. Mater., 2018, 30(21): 7418.

[63]

Suh SS, Yoon WY, Kim DH, Kwon SU, Kim JH, Kim YU, Jeong CU, Chan YY, Kang SH, Lee JK. Electrochemical behavior of SiOx anodes with variation of oxygen ratio for Li-ion batteries. Electrochim. Acta, 2014, 148, 111.

[64]

Chen YJ, Li JB, Dai JH. Si and SiOx nanostructures formed via thermal evaporation. Chem. Phys. Lett., 2001, 344(5–6): 450.

[65]

Shi L, Wang WK, Wang AB, Yuan KG, Jin ZQ, Yang YS. Scalable synthesis of core-shell structured SiOx/nitrogen-doped carbon composite as a high-performance anode material for lithium-ion batteries. J. Power Sources, 2016, 318, 184.

[66]

Ferguson FT, Nuth JA. Vapor pressure and evaporation coefficient of silicon monoxide over a mixture of silicon and silica. J. Chem. Eng. Data, 2012, 57(3): 721.

[67]

Kim MK, Jang BY, Lee JS, Kim JS, Nahm S. Microstructures and electrochemical performances of nano-sized SiOx (1.18 ≤ x ≤ 1.83) as an anode material for a lithium(Li)-ion battery. J. Power Sources, 2013, 244, 115.

[68]

W.Y. Chen, R.V. Salvatierra, M.Q. Ren, J.H. Chen, M.G. Stanford, and J.M. Tour, Laser-induced silicon oxide for anode-free lithium metal batteries, Adv. Mater., 32(2020), No. 33, art. No. 2002850.

[69]

Liu YX, Ruan JJ, Liu F, Fan YM, Wang P. Synthesis of SiOx/C composite with dual interface as Li-ion battery anode material. J. Alloys Compd., 2019, 802, 704.

[70]

Xu T, Wang Q, Zhang J, Xie XH, Xia BJ. Green synthesis of dual carbon conductive network-encapsulated hollow SiOx spheres for superior lithium-ion batteries. ACS Appl. Mater. Interfaces, 2019, 11(22): 19959.

[71]

PP, Zhao HL, Gao CH, Du ZH, Wang J, Liu X. SiOx—C dual-phase glass for lithium ion battery anode with high capacity and stable cycling performance. J. Power Sources, 2015, 274, 542.

[72]

PP, Zhao HL, Gao CH, Zhang TH, Liu X. Highly efficient and scalable synthesis of SiOx/C composite with core-shell nanostructure as high-performance anode material for lithium ion batteries. Electrochim. Acta, 2015, 152, 345.

[73]

Z.L. Li, H.L. Zhao, P.P. Lü, Z.J. Zhang, Y. Zhang, Z.H. Du, Y.Q. Teng, L.N. Zhao, and Z.M. Zhu, Watermelon-like structured SiOx-TiO2@C nanocomposite as a high-performance lithium-ion battery anode, Adv. Funct. Mater., 28(2018), No. 31, art. No. 1605711.

[74]

Li ZL, Zhao HL, Wang J, Zhang TH, Fu BY, Zhang ZJ, Tao X. Rational structure design to realize high-performance SiOx@C anode material for lithium ion batteries. Nano Res., 2020, 13(2): 527.

[75]

Li J, Huang JG. A nanofibrous polypyrrole/silicon composite derived from cellulose substance as the anode material for lithium-ion batteries. Chem. Commun., 2015, 51(78): 14590.

[76]

W. Liu, J.Z. Wang, J.T. Wang, X.Z. Guo, and H. Yang, Three-dimensional nitrogen-doped carbon coated hierarchically porous silicon composite as lithium-ion battery anode, J. Alloys Compd., 874(2021), art. No. 159921.

[77]

Wang MY, Jia DL, Li J, Huang JG. Nanofibrous silicon/carbon composite sheet derived from cellulose substance as free-standing lithium-ion battery anodes. RSC Adv., 2014, 4(64): 33981.

[78]

Liu D, Chen CR, Hu YY, Wu J, Zheng D, Xie ZZ, Wang GW, Qu DY, Li JS, Qu DY. Reduced graphene-oxide/highly ordered mesoporous SiOx hybrid material as an anode material for lithium ion batteries. Electrochim. Acta, 2018, 273, 26.

[79]

Zhang JY, Ma PP, Hou ZL, Zhang XM, Li CB. One-step synthesis of SiOx@graphene composite material by a hydrothermal method for lithium-ion battery anodes. Enegy Fuels, 2020, 34(3): 3895.

[80]

Zhang JY, Hou ZL, Zhang XM, Zhang LC, Li CB. Delicate construction of Si@SiOx composite materials by microwave hydrothermal for lithium-ion battery anodes. Ionics, 2020, 26(1): 69.

[81]

Ren YR, Li MQ. Facile synthesis of SiOx@C composite nanorods as anodes for lithium ion batteries with excellent electrochemical performance. J. Power Sources, 2016, 306, 459.

[82]

Gao CH, Zhao HL, PP, Wang CM, Wang J, Zhang TH, Xia Q. Superior cycling performance of SiOx/C composite with arrayed mesoporous architecture as anode material for lithium-ion batteries. J. Electrochem. Soc., 2014, 161(14): A2216.

[83]

Ren YR, Wu XM, Li MQ. Highly stable SiOx/multi-wall carbon nanotube/N-doped carbon composite as anodes for lithium-ion batteries. Electrochim. Acta, 2016, 206, 328.

[84]

Wang J, Zhao HL, He JC, Wang CM, Wang J. Nano-sized SiOx/C composite anode for lithium ion batteries. J. Power Sources, 2011, 196(10): 4811.

[85]

Z.L. Li, N.N. Yao, H.L. Zhao, Z. Yang, B.Y. Fu, and J. Wang, Communication—self-template fabrication of porous Si/SiOx/C anode material for lithium-ion batteries, J. Electrochem. Soc., 167(2020), No. 2, art. No. 020555.

[86]

J. Hwang, K. Kim, W.S. Jung, H. Choi, and J.H. Kim, Facile and scalable synthesis of SiOx materials for Li-ion negative electrodes, J. Power Sources, 436(2019), art. No. 226883.

[87]

Y.D. Cao, R.A. Dunlap, and M.N. Obrovac, Electrochemistry and thermal behavior of SiOx made by reactive gas milling, J. Electrochem. Soc., 167(2020), No. 11, art. No. 110501.

[88]

Xu DH, Chen WY, Luo YL, Wei HS, Yang CJ, Cai X, Fang YP, Yu XY. Amorphous TiO2 layer on silicon monoxide nanoparticles as stable and scalable core-shell anode materials for high performance lithium ion batteries. Appl. Surf. Sci., 2019, 479, 980.

[89]

Z.X. Xiao, C.H. Yu, X.Q. Lin, X. Chen, C.X. Zhang, H.R. Jiang, R.F. Zhang, and F. Wei, TiO2 as a multifunction coating layer to enhance the electrochemical performance of SiOx@TiO2@C composite as anode material, Nano Energy, 77(2020), art. No. 105082.

[90]

Z.Y. Wang, N. Yang, L. Ren, X.M. Wang, and X. Zhang, Core-shell structured SiOx@C with controllable mesopores as anode materials for lithium-ion batteries, Microporous Mesoporous Mater., 307(2020), art. No. 110480.

[91]

L. Liu, X.X. Li, G. He, G.Q. Zhang, G.J. Su, and C.H. Fang, SiO@C/TiO2 nanospheres with dual stabilized architecture as anode material for high-performance Li-ion battery, J. Alloys Compd., 836(2020), art. No. 155407.

[92]

Bae J, Kim DS, Yoo H, Park E, Lim YG, Park MS, Kim YJ, Kim H. High-performance Si/SiOx nanosphere anode material by multipurpose interfacial engineering with black TiO2x. ACS Appl. Mater. Interfaces, 2016, 8(7): 4541.

[93]

J.G. Guo, W. Zhai, Q. Sun, Q. Ai, J. Li, J. Cheng, L.N. Dai, and L.J. Ci, Facilely tunable core-shell Si@SiOx nanostructures prepared in aqueous solution for lithium ion battery anode, Electrochim. Acta, 342(2020), art. No. 136068.

[94]

F. Dou, Y.H. Weng, G.R. Chen, L.Y. Shi, H.J. Liu, and D.S. Zhang, Volume expansion restriction effects of thick TiO2/C hybrid coatings on micro-sized SiOx anode materials, Chem. Eng. J., 387(2020), art. No. 124106.

[95]

Teng ZG, Su XD, Zheng YY, Sun J, Chen GT, Tian CC, Wang JD, Li H, Zhao YN, Lu GM. Mesoporous silica hollow spheres with ordered radial mesochannels by a spontaneous self-transformation approach. Chem. Mater., 2013, 25(1): 98.

[96]

Lee JI, Park S. High-performance porous silicon monoxide anodes synthesized via metal-assisted chemical etching. Nano Energy, 2013, 2(1): 146.

[97]

Zhang YY, Hu GW, Yu Q, Liu ZH, Yu C, Wu LS, Zhou L, Mai LQ. Polydopamine sacrificial layer mediated SiOx/C@C yolk@shell structure for durable lithium storage. Mater. Chem. Front., 2020, 4(6): 1656.

[98]

Liu ZH, Zhao YL, He RH, Luo W, Meng JS, Yu Q, Zhao DY, Zhou L, Mai LQ. Yolk@shell SiOx/C microspheres with semi-graphitic carbon coating on the exterior and interior surfaces for durable lithium storage. Energy Storage Mater., 2019, 19, 299.

[99]

D.L. He, P. Li, W. Wang, Q. Wan, J. Zhang, K. Xi, X.M. Ma, Z.W. Liu, L. Zhang, and X.H. Qu, Collaborative design of hollow nanocubes, in situ cross-linked binder, and amorphous void@SiOx@C as a three-pronged strategy for ultrastable lithium storage, Small, 16(2020), No. 5, art. No. 1905736.

[100]

Zhang JY, Zhang XM, Zhang CQ, Liu Z, Zheng J, Zuo YH, Xue CL, Li CB, Cheng BW. Facile and efficient synthesis of a microsized SiOx/C core—shell composite as anode material for lithium ion batteries. Energy Fuels, 2017, 31(8): 8758.

[101]

Lee SJ, Kim HJ, Hwang TH, Choi S, Park SH, Deniz E, Jung DS, Choi JW. Delicate structural control of Si—Si-Ox—C composite via high-speed spray pyrolysis for Li-ion battery anodes. Nano Lett., 2017, 17(3): 1870.

[102]

Wang R, Wang J, Chen S, Jiang CL, Bao W, Su YF, Tan GQ, Wu F. Toward mechanically stable silicon-based anodes using Si/SiOx@C hierarchical structures with well-controlled internal buffer voids. ACS Appl. Mater. Interfaces, 2018, 10(48): 41422.

[103]

Li G, Li JY, Yue FS, Xu Q, Zuo TT, Yin YX, Guo YG. Reducing the volume deformation of high capacity SiOx/G/C anode toward industrial application in high energy density lithium-ion batteries. Nano Energy, 2019, 60, 485.

[104]

He XL, Zhao W, Li DD, Cai PJ, Zhuang QC, Ju ZC. A long-cycle and high-rate Si/SiOx/nitrogen-doped carbon composite as an anode material for lithium-ion batteries. New J. Chem., 2019, 43(46): 18220.

[105]

X. Gao, X.C. Sun, J.S. Liu, N. Gao, and H.D. Li, A carbon-based anode combining with SiOx and nanodiamond for high performance lithium ion battery, J. Energy Storage, 25(2019), art. No. 100901.

[106]

Liu D, Fang K, You XH, Tang HL, Xie ZZ, Li JS, Li X, Qu DY. Formation of thin layer graphite wrapped meso-porous SiOx and its lithium storage application. Ceram. Int., 2019, 45(18): 24707.

[107]

Xiao ZX, Yu CH, Lin XQ, Chen X, Zhang CX, Wei F. Uniform coating of nano-carbon layer on SiOx in aggregated fluidized bed as high-performance anode material. Carbon, 2019, 149, 462.

[108]

Han MS, Yu J. Subnanoscopically and homogeneously dispersed SiOx/C composite spheres for high-performance lithium ion battery anodes. J. Power Sources, 2019, 414, 435.

[109]

J.Y. Zhang, X.M. Zhang, Z.L. Hou, L.C. Zhang, and C.B. Li, Uniform SiOx/graphene composite materials for lithium ion battery anodes, J. Alloys Compd., 809(2019), art. No. 151798.

[110]

Chen LY, Zheng J, Lin SY, Khan S, Huang JL, Liu SH, Chen ZR, Wu DC, Fu RW. Synthesis of SiOx/C composite nanosheets as high-rate and stable anode materials for lithium-ion batteries. ACS Appl. Energy Mater., 2020, 3(4): 3562.

[111]

J.L. Cui, H.B. Zhang, Y.Y. Liu, S.H. Li, W.X. He, J.L. Hu, and J.C. Sun, Facile, economical and environment-friendly synthesis process of porous N-doped carbon/SiOx composite from rice husks as high-property anode for Li-ion batteries, Electrochim. Acta, 334(2020), art. No. 135619.

[112]

Han MS, Mu YB, Yuan F, Liang JB, Jiang T, Bai XD, Yu J. Vertical graphene growth on uniformly dispersed sub-nanoscale SiOx/N-doped carbon composite microspheres with a 3D conductive network and an ultra-low volume deformation for fast and stable lithium-ion storage. J. Mater. Chem. A, 2020, 8(7): 3822.

[113]

W.Y. Chen, D.H. Xu, S.J. Kuang, Z.Q. Wu, H. Hu, M.T. Zheng, and X.Y. Yu, Hierarchically porous SiOx/C and carbon materials from one biomass waste precursor toward high-performance lithium/sodium storage, J. Power Sources, 489(2021), art. No. 229459.

[114]

Chen WY, Liu HF, Kuang SJ, Huang HY, Tang T, Zheng MT, Fang YP, Yu XY. In-situ low-temperature strategy from waste sugarcane leaves towards micro/mesoporous carbon network embedded nano Si-SiOx@C boosting high performances for lithium-ion batteries. Carbon, 2021, 179, 377.

[115]

J.W. Ge, Q.T. Tang, H.L. Shen, F. Zhou, H.B. Zhou, W.Y. Yang, J. Hong, B.B. Xu, and J. Saddique, Controllable preparation of disproportionated SiOx/C sheets with 3D network as high-performance anode materials of lithium ion battery, Appl. Surf. Sci., 552(2021), art. No. 149446.

[116]

Xia M, Li YR, Wu YF, Zhang HB, Yang JK, Zhou N, Zhou Z, Xiong X. Improving the electrochemical properties of a SiO@C/graphite composite anode for high-energy lithium-ion batteries by adding lithium fluoride. Appl. Surf. Sci., 2019, 480, 410.

[117]

Li MQ, Zeng Y, Ren YR, Zeng CM, Gu JW, Feng XF, He HY. Fabrication and lithium storage performance of sugar apple-shaped SiOx@C nanocomposite spheres. J. Power Sources, 2015, 288, 53.

[118]

Gao CH, Zhao HL, Wang J, Wang J, Yan CL, Yin HQ. Self-assembly of hierarchical silicon suboxide nano-particles encapsulated in nitrogen-doped carbon as high performance anode material for lithium-ion batteries. J. Electrochem. Soc., 2019, 166(4): A574.

[119]

Guo WL, Yan X, Hou F, Wen L, Dai YJ, Yang DM, Jiang XT, Liu J, Liang J, Dou SX. Flexible and freestanding SiOx/CNT composite films for high capacity and durable lithium ion batteries. Carbon, 2019, 152, 888.

[120]

Wang XY, Wen ZY, Liu Y, Wu XW. A novel composite containing nanosized silicon and tin as anode material for lithium ion batteries. Electrochim. Acta, 2009, 54(20): 4662.

[121]

Wang XY, Wen ZY, Liu Y, Xu XG, Lin J. Preparation and characterization of a new nanosized silicon—nickel—graphite composite as anode material for lithium ion batteries. J. Power Sources, 2009, 189(1): 121.

[122]

Yom JH, Lee JK, Yoon WY. Improved electrochemical behavior of W-coated SiO—graphite composite anode in lithium-ion secondary battery. J. Appl. Electrochem., 2015, 45(5): 397.

[123]

Lee JK, Lee JH, Kim BK, Yoon WY. Electrochemical characteristics of diamond-like carbon/Cr double-layer coating on silicon monoxide-graphite composite anode for Li-ion batteries. Electrochim. Acta, 2014, 127, 1.

[124]

Zhang JZ, Zhang J, Bao TZ, Xie XH, Xia BJ. Electrochemical and stress characteristics of SiO/Cu/expanded graphite composite as anodes for lithium ion batteries. J. Power Sources, 2017, 348, 16.

[125]

Zhou N, Wu YF, Zhou Q, Li YR, Liu SH, Zhang HB, Zhou Z, Xia M. Enhanced cycling performance and rate capacity of SiO anode material by compositing with monoclinic TiO2 (B). Appl. Surf. Sci., 2019, 486, 292.

[126]

G. Jeong, J.H. Kim, Y.U. Kim, and Y.J. Kim, Multifunctional TiO2 coating for a SiO anode in Li-ion batteries, J. Mater. Chem., 22(2012), No. 16, art. No. 7999.

[127]

Zhou MJ, Gordin ML, Chen SR, Xu T, Song JX, DP, Wang DH. Enhanced performance of SiO/Fe2O3 composite as an anode for rechargeable Li-ion batteries. Electrochem. Commun., 2013, 28, 79.

[128]

Cheng F, Wang GJ, Sun ZX, Yu Y, Huang F, Gong CL, Liu H, Zheng GW, Qin CQ, Wen S. Carbon-coated SiO/ZrO2 composites as anode materials for lithium-ion batteries. Ceram. Int., 2017, 43(5): 4309.

[129]

Gu ZQ, Li WL, Chen YX, Xia XH, Liu HB. Synthesis of the microspherical structure of ternary SiOx@SnO2@C by a hydrothermal method as the anode for high-performance lithium-ion batteries. Sustain. Energy Fuels, 2020, 4(5): 2333.

[130]

Liu B, Abouimrane A, Ren Y, Balasubramanian M, Wang DP, Fang ZZ, Amine K. New anode material based on SiO-SnxCoyCz for lithium batteries. Chem. Mater., 2012, 24(24): 4653.

[131]

B. Liu, A. Abouimrane, D.E. Brown, X.F. Zhang, Y. Ren, Z.Z. Fang, and K. Amine, Mechanically alloyed composite anode materials based on SiO—SnxFeyCz for Li-ion batteries, J. Mater. Chem. A, 1(2013), No. 13, art. No. 4376.

[132]

L.Y. Beaulieu, K.W. Eberman, R.L. Turner, L.J. Krause, and J.R. Dahn, Colossal reversible volume changes in lithium alloys, Electrochem. Solid-State Lett., 4(2001), No. 9, art. No. A137.

[133]

Lin ZH, Li JH, Huang QM, Xu K, Fan WZ, Yu L, Xia QB, Li WS. Insights into the interfacial instability between carbon-coated SiO anode and electrolyte in lithiumion batteries. J. Phys. Chem. C, 2019, 123(20): 12902.

[134]

Jaumann T, Balach J, Langklotz U, Sauchuk V, Fritsch M, Michaelis A, Teltevskij V, Mikhailova D, Oswald S, Klose M, Stephani G, Hauser R, Eckert J, Giebeler L. Lifetime vs. rate capability: Understanding the role of FEC and VC in high-energy Li-ion batteries with nano-silicon anodes. Energy Storage Mater., 2017, 6, 26.

[135]

Xu ZX, Yang J, Li HP, Nuli YN, Wang JL. Electrolytes for advanced lithium ion batteries using silicon-based anodes. J. Mater. Chem. A, 2019, 7(16): 9432.

[136]

Sun YH, Fan L, Li WY, Pang Y, Yang J, Wang CX, Xia YY. SiOx and carbon double-layer coated Si nanorods as anode materials for lithium-ion batteries. RSC Adv., 2016, 6(103): 101008.

[137]

Liu YH, Okano M, Mukai T, Inoue K, Yanagida M, Sakai T. Improvement of thermal stability and safety of lithium ion battery using SiO anode material. J. Power Sources, 2016, 304, 9.

[138]

Huang X, Li MQ. Multi-channel and porous SiO@N-doped C rods as anodes for high-performance lithium-ion batteries. Appl. Surf. Sci., 2018, 439, 336.

[139]

L.B. Chen, K. Wang, X.H. Xie, and J.Y. Xie, Enhancing electrochemical performance of silicon film anode by vinylene carbonate electrolyte additive, Electrochem. Solid-State Lett., 9(2006), No. 11, art. No. A512.

[140]

Choi NS, Yew KH, Lee KY, Sung M, Kim H, Kim SS. Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode. J. Power Sources, 2006, 161(2): 1254.

[141]

Nakai H, Kubota T, Kita A, Kawashima A. Investigation of the solid electrolyte interphase formed by fluoroethylene carbonate on Si electrodes. J. Electrochem. Soc., 2011, 158(7): A798.

[142]

Jaumann T, Balach J, Klose M, Oswald S, Langklotz U, Michaelis A, Eckert J, Giebeler L. SEI-component formation on sub 5 nm sized silicon nanoparticles in Li-ion batteries: The role of electrode preparation, FEC addition and binders. Phys. Chem. Chem. Phys., 2015, 17(38): 24956.

[143]

Y.Z. Yang, Z. Yang, Y.S. Xu, Z.L. Li, N.N. Yao, J. Wang, Z.H. Feng, K. Wang, J.Y. Xie, and H.L. Zhao, Synergistic effect of vinylene carbonate (VC) and LiNO3 as functional additives on interphase modulation for high performance SiO anodes, J. Power Sources, 514(2021), art. No. 230595.

[144]

Shen JQ, Chen HF, Yu L, Huang DH, Luo ZY. 4, 5-difluoro-1, 3-dioxolan-2-one as an film forming additive on LiNi0.8Co0.15Al0.05O2/SiO@C full cells. J. Electroanal. Chem., 2019, 834, 1.

[145]

Kim KW, Lee JG, Park H, Kim J, Ryu JH, Kim YU, Oh SM. Effect of lithium bis(oxalate)borate as an electrolyte additive on carbon-coated SiO negative electrode. J. Korean Electrochem. Soc., 2014, 17(1): 49.

[146]

J.W. Song, C.C. Nguyen, and S.W. Song, Stabilized cycling performance of silicon oxide anode in ionic liquid electrolyte for rechargeable lithium batteries, RSC Adv., 2(2012), No. 5, art. No. 2003.

[147]

Forney MW, Ganter MJ, Staub JW, Ridgley RD, Landi BJ. Prelithiation of silicon-carbon nanotube anodes for lithium ion batteries by stabilized lithium metal powder (SLMP). Nano Lett., 2013, 13(9): 4158.

[148]

Jarvis CR, Lain MJ, Yakovleva MV, Gao Y. A prelithiated carbon anode for lithium-ion battery applications. J. Power Sources, 2006, 162(2): 800.

[149]

Marinaro M, Weinberger M, Wohlfahrt-Mehrens M. Toward pre-lithiatied high areal capacity silicon anodes for Lithium-ion batteries. Electrochim. Acta, 2016, 206, 99.

[150]

Pan QR, Zuo PJ, Mu TS, Du CY, Cheng XQ, Ma YL, Gao YZ, Yin GP. Improved electrochemical performance of micro-sized SiO-based composite anode by prelithiation of stabilized lithium metal powder. J. Power Sources, 2017, 347, 170.

[151]

Zhao H, Fu YB, Ling M, Jia Z, Song XY, Chen ZH, Lu J, Amine K, Liu G. Conductive polymer binder-enabled SiO—SnxCoyCz anode for high-energy lithium-ion batteries. ACS Appl. Mater. Interfaces, 2016, 8(21): 13373.

[152]

Tabuchi T, Yasuda H, Yamachi M. Li-doping process for LixSiO-negative active material synthesized by chemical method for lithium-ion cells. J. Power Sources, 2005, 146(1–2): 507.

[153]

Wang GW, Li FF, Liu D, Zheng D, Luo Y, Qu DY, Ding TY, Qu DY. Chemical prelithiation of negative electrodes in ambient air for advanced lithium-ion batteries. ACS Appl. Mater. Interfaces, 2019, 11(9): 8699.

[154]

Shen YF, Zhang JM, Pu YF, Wang H, Wang B, Qi-an JF, Cao YL, Zhong FP, Ai XP, Yang HX. Effective chemical prelithiation strategy for building a silicon/sulfur Li-ion battery. ACS Energy Lett., 2019, 4(7): 1717.

[155]

Yan MY, Li G, Zhang J, Tian YF, Yin YX, Zhang CJ, Jiang KC, Xu Q, Li HL, Guo YG. Enabling SiOx/C anode with high initial coulombic efficiency through a chemical pre-lithiation strategy for high-energy-density lithium-ion batteries. ACS Appl. Mater. Interfaces, 2020, 12(24): 27202.

[156]

Feng XJ, Yang J, Yu XL, Wang JL, Nuli YN. Low-cost SiO-based anode using green binders for lithium ion batteries. J. Solid State Electrochem., 2013, 17(9): 2461.

[157]

Kulova TL, Skundin AM. Elimination of irreversible capacity of amorphous silicon: Direct contact of the silicon and lithium metal. Russ. J. Electrochem., 2010, 46(4): 470.

[158]

Meng QH, Li G, Yue JP, Xu Q, Yin YX, Guo YG. High-performance lithiated SiOx anode obtained by a controllable and efficient prelithiation strategy. ACS Appl. Mater. Interfaces, 2019, 11(35): 32062.

[159]

Kim HJ, Choi S, Lee SJ, Seo MW, Lee JG, Deniz E, Lee YJ, Kim EK, Choi JW. Controlled prelithiation of silicon monoxide for high performance lithium-ion rechargeable full cells. Nano Lett., 2016, 16(1): 282.

[160]

Noh M, Cho J. Role of Li6CoO4 cathode additive in Li-ion cells containing low coulombic efficiency anode material. J. Electrochem. Soc., 2012, 159(8): A1329.

[161]

K. Park, B.C. Yu, and J.B. Goodenough, Li3N as a cathode additive for high-energy-density lithium-ion batteries, Adv. Energy Mater., 6(2016), No. 10, art. No. 1502534.

[162]

Bie YT, Yang J, Wang JL, Zhou JJ, Nuli YN. Li2O2 as a cathode additive for the initial anode irreversibility compensation in lithium-ion batteries. Chem. Commun., 2017, 53(59): 8324.

[163]

Jeong G, Kim YU, Krachkovskiy SA, Lee CK. A nanostructured SiAl0.2O anode material for lithium batteries. Chem. Mater., 2010, 22(19): 5570.

[164]

J. Nam, E. Kim, R. K, Y. Kim, and T.H. Kim, A conductive self healing polymeric binder using hydrogen bonding for Si anodes in lithium ion batteries, Sci. Rep., 10(2020), art. No. 14966.

[165]

Wang C, Wu H, Chen Z, McDowell MT, Cui Y, Bao Z. Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nat. Chem., 2013, 5(12): 1042.

[166]

Vogl US, Das PK, Weber AZ, Winter M, Kostecki R, Lux SF. Mechanism of interactions between CMC binder and Si single crystal facets. Langmuir, 2014, 30(34): 10299.

[167]

Yoon J, Oh DX, Jo C, Lee J, Hwang DS. Improvement of desolvation and resilience of alginate binders for Si-based anodes in a lithium ion battery by calcium-mediated cross-linking. Phys. Chem. Chem. Phys., 2014, 16(46): 25628.

[168]

Chen D, Yi R, Chen SR, Xu T, Gordin ML, Wang DH. Facile synthesis of graphene-silicon nanocomposites with an advanced binder for high-performance lithium-ion battery anodes. Solid State Ionics, 2014, 254, 65.

[169]

Kuruba R, Datta MK, Damodaran K, Jampani PH, Gattu B, Patel PP, Shanthi PM, Damle S, Kumta PN. Guar gum: Structural and electrochemical characterization of natural polymer based binder for silicon-carbon composite rechargeable Li-ion battery anodes. J. Power Sources, 2015, 298, 331.

[170]

Yue L, Zhang LZ, Zhong HX. Carboxymethyl chitosan: A new water soluble binder for Si anode of Li-ion batteries. J. Power Sources, 2014, 247, 327.

[171]

Jeong YK, Kwon TW, Lee I, Kim TS, Coskun A, Choi JW. Hyperbranched β-cyclodextrin polymer as an effective multidimensional binder for silicon anodes in lithium rechargeable batteries. Nano Lett., 2014, 14(2): 864.

[172]

Komaba S, Shimomura K, Yabuuchi N, Ozeki T, Yui H, Konno K. Study on polymer binders for high-capacity SiO negative electrode of Li-ion batteries. J. Phys. Chem. C, 2011, 115(27): 13487.

[173]

Magasinski A, Zdyrko B, Kovalenko I, Hertzberg B, Burtovyy R, Huebner CF, Fuller TF, Luzinov I, Yush-in G. Toward efficient binders for Li-ion battery Si-based anodes: Polyacrylic acid. ACS Appl. Mater. Interfaces, 2010, 2(11): 3004.

[174]

Liu Z, Han SJ, Xu C, Luo YW, Peng N, Qin CY, Zhou MJ, Wang WQ, Chen LW, Okada S. In situ cross-linked PVA—PEI polymer binder for long-cycle silicon anodes in Li-ion batteries. RSC Adv., 2016, 6(72): 68371.

[175]

Huang S, Ren JG, Liu R, Yue M, Huang YY, Yuan GH. The progress of novel binder as a non-ignorable part to improve the performance of Si-based anodes for Li-ion batteries. Int. J. Energy Res., 2018, 42(3): 919.

[176]

X.Y. Zhu, F. Zhang, L. Zhang, L.Y. Zhang, Y.Z. Song, T. Jiang, S. Sayed, C. Lu, X.G. Wang, J.Y. Sun, and Z.F. Liu, A highly stretchable cross-linked polyacrylamide hydrogel as an effective binder for silicon and sulfur electrodes toward durable lithium-ion storage, Adv. Funct. Mater., 28(2018), No. 11, art. No. 1705015.

[177]

Zhang LX, Liu ZH, Cui GL, Chen LQ. Biomass-derived materials for electrochemical energy storages. Prog. Polym. Sci., 2015, 43, 136.

[178]

Y. Cho, J. Kim, A. Elabd, S. Choi, K. Park, T.W. Kwon, J. Lee, K. Char, A. Coskun, and J.W. Choi, A pyrene—poly(acrylic acid)—polyrotaxane supramolecular binder network for high-performance silicon negative electrodes, Adv. Mater., 31(2019), No. 51, art. No. 1905048.

AI Summary AI Mindmap
PDF

89

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/