Thermodynamic and thermoelectric properties of titanium oxycarbide with metal vacancy

Bao Zhang , Jiusan Xiao , Shuqiang Jiao , Hongmin Zhu

International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (4) : 787 -795.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (4) : 787 -795. DOI: 10.1007/s12613-022-2421-8
Article

Thermodynamic and thermoelectric properties of titanium oxycarbide with metal vacancy

Author information +
History +
PDF

Abstract

Normal titanium oxycarbide exhibits an excellent electrical conductivity and a high carrier concentration of approximately 1021 cm−3; however, the low Seebeck coefficient limits the thermoelectric application. In this study, first-principle calculations demonstrate that the metal vacancy of titanium oxycarbide weakens the density of state passing through the valence band at the Fermi level, impairing the carrier concentration and enhancing carrier mobility. Thermodynamic analysis justifies the formation of titanium oxycarbide with metal vacancy through solid-state reaction. Transmission electron microscopic images demonstrate the segregation of metal vacancy based on the observation of the defect-rich and single-crystal face-centered cubic regions. Metal vacancy triggers the formation of vacancy-rich and single-crystal face-centered cubic regions. The aggregation of metal vacancy leads to the formation of the vacancy-rich region and other regions with a semi-coherent interface, suppressing the carrier concentration from 1.71 × 1021 to 4.5 × 1020 cm−3 and resulting in the Seebeck coefficient from −11 µV/K of TiC0.5O0.5 to −64 µV/K at 1073 K. Meanwhile, vacancies accelerate electron migration from 1.65 to 4.22 cm−2·V−1·s−1, maintaining high conductivity. The figure of merit (ZT) increases more than five orders of magnitude via the introduction of metal vacancy, with the maximum figure of 2.11 × 10−2 at 1073 K. These results indicate the potential thermoelectric application of metal-oxycarbide materials through vacancy engineering.

Keywords

titanium oxycarbide / metal vacancy / thermoelectric / first-principle calculation / thermodynamics

Cite this article

Download citation ▾
Bao Zhang, Jiusan Xiao, Shuqiang Jiao, Hongmin Zhu. Thermodynamic and thermoelectric properties of titanium oxycarbide with metal vacancy. International Journal of Minerals, Metallurgy, and Materials, 2022, 29(4): 787-795 DOI:10.1007/s12613-022-2421-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Shi XL, Zou J, Chen ZG. Advanced thermoelectric design: From materials and structures to devices. Chem. Rev., 2020, 120(15): 7399.

[2]

Su HT, Zhou FB, Shi BB, Qi HN, Deng JC. Causes and detection of coalfield fires, control techniques, and heat energy recovery: A review. Int. J. Miner. Metall. Mater., 2020, 27(3): 275.

[3]

Roychowdhury S, Ghosh T, Arora R, Samanta M, Xie L, Singh NK, Soni A, He J, Waghmare UV, Biswas K. Enhanced atomic ordering leads to high thermoelectric performance in AgSbTe2. Science, 2021, 371(6530): 722.

[4]

Z. Ma, J.T. Wei, P.S. Song, M.L. Zhang, L.L. Yang, J. Ma, W. Liu, F.H. Yang, and X.D. Wang, Review of experimental approaches for improving ZT of thermoelectric materials, Mater. Sci. Semicond. Process., 121(2021), art. No. 105303.

[5]

Zhang X, Zhao LD. Thermoelectric materials: Energy conversion between heat and electricity. J. Materiomics, 2015, 1(2): 92.

[6]

Tan GJ, Zhao LD, Kanatzidis MG. Rationally designing high-performance bulk thermoelectric materials. Chem. Rev., 2016, 116(19): 12123.

[7]

R. Prasad and S.D. Bhame, Review on texturization effects in thermoelectric oxides, Mater. Renewable Sustainable Energy, 9(2020), art. No. 3.

[8]

Nag A, Shubha V. Oxide thermoelectric materials: A structure-property relationship. J. Electron. Mater., 2014, 43(4): 962.

[9]

Y. Gu, X.L. Shi, L. Pan, W.D. Liu, Q. Sun, X. Tang, L.Z. Kou, Q.F. Liu, Y.F. Wang, and Z.G. Chen, Rational electronic and structural designs advance BiCuSeO thermoelectrics, Adv. Funct. Mater., 31(2021), No. 25, art. No. 2101289.

[10]

Liu HQ, Ma HA, Su TC, Zhang YW, Sun B, Liu BW, Kong LJ, Liu BM, Jia XP. High-thermoelectric performance of TiO2−x fabricated under high pressure at high temperatures. J. Materiomics, 2017, 3(4): 286.

[11]

G.Y. Ji, L.J. Chang, H.A. Ma, B.M. Liu, Q. Chen, Y. Wang, X.J. Li, J.N. Wang, Y.W. Zhang, and X.P. Jia, Synthesis and characterization of Al doped non-stoichiometric ratio titanium oxide at high temperature and pressure, J. Alloys Compd., 850(2021), art. No. 156623.

[12]

Morelli DT. Thermal conductivity and thermoelectric power of titanium carbide single crystals. Phys. Rev. B Condens. Matter, 1991, 44(11): 5453.

[13]

L.W. Zhao, W.B. Qiu, Y.X. Sun, L.Q. Chen, H. Deng, L. Yang, X.M. Shi, and J. Tang, Enhanced thermoelectric performance of Bi0.3Sb1.7Te3 based alloys by dispersing TiC ceramic nanoparticles, J. Alloys Compd., 863(2021), art. No. 158376.

[14]

L.H. Huang, J.C. Wang, X.B. Mo, X.B. Lei, S.D. Ma, C. Wang, and Q.Y. Zhang, Improving the thermoelectric properties of the half-Heusler compound VCoSb by vanadium vacancy, Materials, 12(2019), No. 10, art. No. 1637.

[15]

Li G, Yang JY, Xiao Y, Fu LW, Luo YB, Zhang D, Liu M, Li WX, Zhang MY. Effect of TiC nanoinclusions on thermoelectric and mechanical performance of polycrystalline In4Se2.65. J. Am. Ceram. Soc., 2015, 98(12): 3813.

[16]

Liu Y, Ou CL, Hou JG, Zhu HM. Effect of coated TiO2 nano-particle on thermoelectric performance of TiC0.5O0.5 ceramics. J. Alloys Compd., 2012, 531, 5.

[17]

C.L. Ou, J.G. Hou, T.R. Wei, B. Jiang, S.Q. Jiao, J.F. Li, and H.M. Zhu, High thermoelectric performance of all-oxide heterostructures with carrier double-barrier filtering effect, NPG Asia Mater., 7(2015), No. 5, art. No. e182.

[18]

K.C. Chang and C.J. Liu, Disorder effect and thermoelectric properties of Bi1−xCaxCu1−ySeO with Cu vacancy, J. Alloys Compd., 896(2022), art. No. 163033.

[19]

W. Saito, K. Hayashi, J.F. Dong, J.F. Li, and Y. Miyazaki, Control of the thermoelectric properties of Mg2Sn single crystals via point-defect engineering, Sci. Rep., 2020(2020), art. No. 10.

[20]

Y.B. Zhu, Z.J. Han, F. Jiang, E.T. Dong, B.P. Zhang, W.Q. Zhang, and W.S. Liu, Thermodynamic criterions of the thermoelectric performance enhancement in Mg2Sn through the self-compensation vacancy, Mater. Today Phys., 16(2021), art. No. 100327.

[21]

Y. Wang, W.D. Liu, X.L. Shi, M. Hong, L.J. Wang, M. Li, H. Wang, J. Zou, and Z.G. Chen, Enhanced thermoelectric properties of nanostructured n-type Bi2Te3 by suppressing Te vacancy through non-equilibrium fast reaction, Chem. Eng. J., 391(2020), art. No. 123513.

[22]

Jiang B, Hou N, Huang SY, Zhou GG, Hou JG, Cao ZM, Zhu HM. Structural studies of TiC1−xOx solid solution by Rietveld refinement and first-principles calculations. J. Solid State Chem., 2013, 204, 1.

[23]

Zhang B, Xiao JS, Jiao SQ, Zhu HM. A novel titanium oxycarbide phase with metal-vacancy (Ti1−yCxO1−x): Structural and thermodynamic basis. Ceram. Int., 2021, 47(11): 16324.

[24]

Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations. Phys. Rev. B, 1976, 13(12): 5188.

[25]

Perdew JP, Yue W. Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation. Phys. Rev. B, 1986, 33(12): 8800.

[26]

Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77(18): 3865.

[27]

Pan L, Lang YD, Zhao L, Berardan D, Amzallag E, Xu C, Gu YF, Chen CC, Zhao LD, Shen XD, Lyu YN, Lu CH, Wang YF. Realization of n-type and enhanced thermoelectric performance of p-type BiCuSeO by controlled iron incorporation. J. Mater. Chem. A, 2018, 6(27): 13340.

[28]

Conze S, Veremchuk I, Reibold M, Matthey B, Michaelis A, Grin Y, Kinski I. Magnéli phases Ti4O7 and Ti8O15 and their carbon nanocomposites via the thermal decomposition-precursor route. J. Solid State Chem., 2015, 229, 235.

[29]

Jiang Z, Shangguan WF. Rational removal of stabilizerligands from platinum nanoparticles supported on photocatalysts by self-photocatalysis degradation. Catal. Today, 2015, 242, 372.

[30]

Xu BQ, Zhao D, Sohn HY, Mohassab Y, Yang B, Lan YP, Yang J. Flash synthesis of Magnéli phase (TinO2n−1) nanoparticles by thermal plasma treatment of H2TiO3. Ceram. Int., 2018, 44(4): 3929.

[31]

Y. Wang, P. Miska, D. Pilloud, D. Horwat, F. Mücklich, and J.F. Pierson, Transmittance enhancement and optical band gap widening of Cu2O thin films after air annealing, J. Appl. Phys., 115(2014), No. 7, art. No. 073505.

[32]

Koketsu T, Ma JW, Morgan BJ, Body M, Legein C, Dachraoui W, Giannini M, Demortière A, Salanne M, Dardoize F, Groult H, Borkiewicz OJ, Chapman KW, Strasser P, Dambournet D. Reversible magnesium and aluminium ions insertion in cation-deficient anatase TiO2. Nat. Mater., 2017, 16(11): 1142.

[33]

Liu HQ, Ma HA, Chen LX, Wang F, Liu BM, Chen JX, Ji GY, Zhang YW, Jia XP. Pressure-induced thermoelectric properties of strongly reduced titanium oxides. CrystEngComm, 2019, 21(6): 1042.

[34]

Heremans JP, Wiendlocha B, Chamoire AM. Resonant levels in bulk thermoelectric semiconductors. Energy Environ. Sci., 2012, 5(2): 5510.

[35]

Tkach A, Resende J, Saravanan KV, Costa ME, Diaz-Chao P, Guilmeau E, Okhay O, Vilarinho PM. Abnormal grain growth as a method to enhance the thermoelectric performance of Nb-doped strontium titanate ceramics. ACS Sustainable Chem. Eng., 2018, 6(12): 15988.

[36]

Xu L, Garrett MP, Hu B. Doping effects on internally coupled Seebeck coefficient, electrical, and thermal conductivities in aluminum-doped TiO2. J. Phys. Chem. C, 2012, 116(24): 13020.

[37]

Wan XY, Liu ZM, Sun L, Jiang P, Bao XH. Synergetic enhancement of thermoelectric performance in a Bi0.5Sb1.5Te3/SrTiO3 heterostructure. J. Mater. Chem. A, 2020, 8(21): 10839.

[38]

Zhang RQ, Zhou ZZ, Yao Q, Qi N, Chen ZQ. Significant improvement in thermoelectric performance of SnSe/SnS via nano-heterostructures. Phys. Chem. Chem. Phys., 2021, 23(6): 3794.

[39]

C. Jung, B. Dutta, P. Dey, S.J. Jeon, S. Han, H.M. Lee, J.S. Park, S.H. Yi, and P.P. Choi, Tailoring nanostructured NbCoSn-based thermoelectric materials via crystallization of an amorphous precursor, Nano Energy, 80(2021), art. No. 105518.

[40]

G. Korotcenkov, V. Brinzari, and M.H. Ham, In2O3-based thermoelectric materials: The state of the art and the role of surface state in the improvement of the efficiency of thermoelectric conversion, Crystals, 8(2018), No. 1, art. No. 14.

[41]

Lim KH, Wong KW, Liu Y, Zhang Y, Cadavid D, Cabot A, Ng KM. Critical role of nanoinclusions in silver selenide nanocomposites as a promising room temperature thermoelectric material. J. Mater. Chem. C, 2019, 7(9): 2646.

[42]

Yang S, Gu HZ, Li ZH, Huang A. Enhanced thermoelectric performance in aluminum-doped zinc oxide by porous architecture and nanoinclusions. J. Eur. Ceram. Soc., 2021, 41(6): 3466.

AI Summary AI Mindmap
PDF

107

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/