Recent progress in upgrading metallurgical-grade silicon to solar-grade silicon via pyrometallurgical routes

Yun Lei , Xiaodong Ma , Ye Wang , Zhiyuan Chen , Yongsheng Ren , Wenhui Ma , Kazuki Morita

International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (4) : 767 -782.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (4) : 767 -782. DOI: 10.1007/s12613-022-2418-3
Invited Review

Recent progress in upgrading metallurgical-grade silicon to solar-grade silicon via pyrometallurgical routes

Author information +
History +
PDF

Abstract

Si-based photovoltaic solar power has been rapidly developed as a renewable and green energy source. The widespread use of Si-based solar cells requires large amounts of solar-grade Si (SoG−Si) to manufacture Si wafers. Chemical routes, mainly the modified Siemens process, have dominated the preparation of polycrystalline SoG−Si; however, traditional chemical techniques employ a series of complex chemical reactions involving various corrosive and hazardous reagents. In addition, large amounts of complex waste solar cells and Si kerf slurry waste gradually accumulate and are difficult to recycle using these approaches. New methods are required to meet the demand for SoG−Si preparation and Si waste recycling. The metallurgical route shows promise but is hindered by the problem of eliminating B and P from metallurgical-grade Si (MG−Si). Various pyrometallurgical treatments have been proposed to enhance the removal of B and P from MG−Si. This article reviews Si refining with slag treatment, chlorination, vacuum evaporation, and solvent refining, and summarizes and discusses the basic principles and recent representative studies of the four methods. Among these, solvent refining is the most promising and environmentally friendly approach for obtaining low-cost SoG−Si and is a popular research topic. Finally, a simple and green approach, i.e., a combination of solvent refining, slag treatment, or vacuum directional solidification, is proposed for low-cost SoG−Si preparation using MG−Si or Si wastes as raw materials.

Keywords

silicon refining / solar-grade silicon / solvent refining / vacuum evaporation / slag treatment / Si kerf slurry waste

Cite this article

Download citation ▾
Yun Lei, Xiaodong Ma, Ye Wang, Zhiyuan Chen, Yongsheng Ren, Wenhui Ma, Kazuki Morita. Recent progress in upgrading metallurgical-grade silicon to solar-grade silicon via pyrometallurgical routes. International Journal of Minerals, Metallurgy, and Materials, 2022, 29(4): 767-782 DOI:10.1007/s12613-022-2418-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

S. Philipps, F. Ise, and W. Warmuth, Photovoltaics Report, Fraunhofer Institiute for Solar Energy Systems [2021-07-27]. https://www.ise.fraunhofer.de/en/publications/studies/photovoltaics-report.html

[2]

Hofstetter J, Leliñvre JF, Cañizo CD, Luque A. Acceptable contamination levels in solar grade silicon: From feedstock to solar cell. Mater. Sci. Eng. B, 2009, 159–160, 299.

[3]

Gribov B G, Zinov’ev K V. Preparation of high-purity silicon for solar cells. Inorg. Mater., 2003, 39(7): 653.

[4]

Davis JR, Rohatgi A, Hopkins RH, Blais PD, Rai-Choudhury P, McCormick JR, Mollenkopf HC. Impurities in silicon solar cells. IEEE Trans. Electron Devices, 1980, 27(4): 677.

[5]

Hu L, Wang Z, Gong XZ, Guo ZC, Zhang H. Impurities removal from metallurgical-grade silicon by combined Sn−Si and Al−Si refining processes. Metall. Mater. Trans. B, 2013, 44(4): 828.

[6]

Lai HX, Huang LQ, Lu CH, Fang M, Ma WH, Xing PF, Li JT, Luo XT. Leaching behavior of impurities in Ca-alloyed metallurgical grade silicon. Hydrometallurgy, 2015, 156, 173.

[7]

Meteleva-Fischer YV, Yang Y, Boom R, Kraaijveld B, Kuntzel H. Microstructure of metallurgical grade silicon during alloying refining with calcium. Intermetallics, 2012, 25, 9.

[8]

Sahu SK, Asselin E. Effect of oxidizing agents on the hydrometallurgical purification of metallurgical grade silicon. Hydrometallurgy, 2012, 121–124, 120.

[9]

Lei Y, Ma WH, Ma XD, Wu JJ, Wei KX, Li SY, Morita K. Leaching behaviors of impurities in metallurgical-grade silicon with hafnium addition. Hydrometallurgy, 2017, 169, 433.

[10]

F.S. Xi, S.Y. Li, W.H. Ma, Z.J. Chen, K.X. Wei, and J.J. Wu, A review of hydrometallurgy techniques for the removal of impurities from metallurgical-grade silicon, Hydrometallurgy, 201(2021), art. No. 105553.

[11]

H. Chen, K. Morita, X.D. Ma, Z.Y. Chen, and Y. Wang, Boron removal for solar-grade silicon production by metallurgical route: A review, Sol. Energy Mater. Sol. Cells, 203(2019), art. No. 110169.

[12]

Kline J, Tangstad M, Tranell G. A Raman spectroscopic study of the structural modifications associated with the addition of calcium oxide and boron oxide to silica. Metall. Mater. Trans. B, 2015, 46(1): 62.

[13]

Wang Y, Morita K. Measurement of CaO−SiO2−SaCl2 slag density by an improved Archimedean method. J. Min. Metall. Sect. B, 2015, 51(2): 113.

[14]

Krystad E, Jakobsson LK, Tang K, Tranell G. Thermodynamic behavior and mass transfer kinetics of boron between ferrosilicon and CaO−SiO2 slag. Metall. Mater. Trans. B, 2017, 48(5): 2574.

[15]

Liaw HM, d’Aragona FS. Purification of metallurgical-grade silicon by slagging and impurity redistribution. Sol. Cells, 1983, 10(2): 109.

[16]

Teixeira LAV, Tokuda Y, Yoko T, Morita K. Behavior and state of boron in CaO−SiO2 slags during refining of solar grade silicon. ISIJ Int., 2009, 49(6): 777.

[17]

Wei KX, Lu HF, Ma WH, Li YL, Ding Z, Wu JJ, Dai YN. Boron removal from metallurgical-grade silicon by CaO−SiO2 slag refining. Rare Met., 2015, 34(7): 522.

[18]

Wu JJ, Li YL, Ma WH, Wei KX, Yang B, Dai YN. Boron removal in purifying metallurgical grade silicon by CaO−SiO2 slag refining. Trans. Nonferrous Met. Soc. China, 2014, 24(4): 1231.

[19]

Fang M, Lu CH, Huang LQ, Lai HX, Chen J, Yang XB, Li JT, Ma WH, Xing PF, Luo XT. Multiple slag operation on boron removal from metallurgical-grade silicon using Na2O−SiO2 slags. Ind. Eng. Chem. Res., 2014, 53(30): 12054.

[20]

Lai HX, Huang LQ, Lu CH, Fang M, Ma WH, Xing PF, Li JT, Luo XT. Reaction mechanism and kinetics of boron removal from metallurgical-grade silicon based on Li2O−SiO2 slags. JOM, 2016, 68(9): 2371.

[21]

Noguchi R, Suzuki K, Tsukihashi F, Sano N. Thermodynamics of boron in a silicon melt. Metall. Mater. Trans. B, 1994, 25(6): 903.

[22]

Luo DW, Liu N, Lu YP, Zhang GL, Li TJ. Removal of boron from metallurgical grade silicon by electromagnetic induction slag melting. Trans. Nonferrous Met. Soc. China, 2011, 21(5): 1178.

[23]

Jung EJ, Moon BM, Seok SH, Min DJ. The mechanism of boron removal in the CaO−SiO2−Al2O3 slag system for SoG−Si. Energy, 2014, 66, 35.

[24]

Safarian J, Tranell G, Tangstad M. Boron removal from silicon by CaO−Na2O−SiO2 ternary slag. Metall. Mater. Trans. E, 2015, 2(2): 109

[25]

Zhang L, Tan Y, Xu FM, Li JY, Wang HY, Gu Z. Removal of boron from molten silicon using Na2O−CaO−SiO2 slags. Sep. Sci. Technol., 2013, 48(7): 1140.

[26]

Wu JJ, Wang FM, Ma WH, Lei Y, Yang B. Thermodynamics and kinetics of boron removal from metallurgical grade silicon by addition of high basic potassium carbonate to calcium silicate slag. Metall. Mater. Trans. B, 2016, 47(3): 1796.

[27]

Y. Hou, Y.D. Wu, G.H. Zhang, and K.C. Chou, Removal of boron from metallurgical grade silicon by CaO−SiO2 based slags, Metall. Res. Technol., 116(2019), No. 4, art. No. 413.

[28]

Zhu MY, Wu GX, Azarov A, Monakhov E, Tang K, Müller M, Safarian J. Effects of La2O3 addition into CaO−SiO2 slag: Structural evolution and impurity separation from Si−Sn alloy. Metall. Mater. Trans. B, 2021, 52(5): 3045.

[29]

Wang FM, Wu JJ, Ma WH, Xu M, Lei Y, Yang B. Removal of impurities from metallurgical grade silicon by addition of ZnO to calcium silicate slag. Sep. Purif. Technol., 2016, 170, 248.

[30]

Wu JJ, Ma WH, Jia BJ, Yang B, Liu DC, Dai YN. Boron removal from metallurgical grade silicon using a CaO−Li2O−SiO2 molten slag refining technique. J. Non Cryst. Solids, 2012, 358(23): 3079.

[31]

Ding Z, Ma WH, Wei KX, Wu JJ, Zhou Y, Xie KQ. Boron removal from metallurgical-grade silicon using lithium containing slag. J. Non Cryst. Solids, 2012, 358(18–19): 2708.

[32]

Wang Y, Ma XD, Morita K. Evaporation removal of boron from metallurgical-grade silicon using CaO−CaCl2−SiO2 slag. Metall. Mater. Trans. B, 2014, 45, 334.

[33]

Jakobsson LK, Tangstad M. Erratum to: Distribution of boron between silicon and CaO−MgO−Al2O3−SiO2 stags. Metall. Mater. Trans. B, 2014, 45(6): 2516.

[34]

C.H. Yin, B.F. Hu, and X.M. Huang, Boron removal from molten silicon using sodium-based slags, J. Semicond., 32(2011), No. 9, art. No. 092003.

[35]

Li JY, Zhang L, Tan Y, Jiang DC, Wang DK, Li YQ. Research of boron removal from polysilicon using CaO−Al2O3−SiO2−CaF2 slags. Vacuum, 2014, 103, 33.

[36]

Johnston MD, Barati M. Distribution of impurity elements in slag-silicon equilibria for oxidative refining of metallurgical silicon for solar cell applications. Sol. Energy Mater. Sol. Cells, 2010, 94(12): 2085.

[37]

Nishimoto H, Kang Y, Yoshikawa T, Morita K. The rate of boron removal from molten silicon by CaO−SiO2 slag and Cl2 treatment. High Temp. Mater. Process., 2012, 31(4–5): 471.

[38]

Xia ZF, Wu JJ, Ma WH, Lei Y, Wei KX, Dai YN. Separation of boron from metallurgical grade silicon by a synthetic CaO−CaCl2 slag treatment and Ar−H2O−O2 gas blowing refining technique. Sep. Purif. Technol., 2017, 187, 25.

[39]

Li JY, Cao PP, Ni P, Li YQ, Tan Y. Enhanced boron removal from metallurgical grade silicon by the slag refining method with the addition of tin. Sep. Sci. Technol., 2016, 51(9): 1598

[40]

Ma XD, Yoshikawa T, Morita K. Purification of metallurgical grade Si combining Si-Sn solvent refining with slag treatment. Sep. Purif. Technol., 2014, 125, 264.

[41]

Ma XD, Yoshikawa T, Morita K. Removal of boron from silicon-tin solvent by slag treatment. Metall. Mater. Trans. B, 2013, 44(3): 528.

[42]

Xu M, Zhu YY, Wu JJ, Xia ZF, Wei KX, Ma WH. Mechanism of boron removal using calcium silicate slag containing CaCl2 under O2 atmosphere. Metall. Mater. Trans. B, 2021, 52(4): 2573.

[43]

Chen H, Yuan XZ, Morita K, Zhong YJ, Ma XD, Chen ZY, Wang Y. Reaction mechanism and kinetics of boron removal from molten silicon via CaO−SiO2−CaCl2 slag treatment and ammonia injection. Metall. Mater. Trans. B, 2019, 50(5): 2088.

[44]

Q.L. Wang, J.J. Wu, S.F. Qian, H.Z. Gu, Z.F. Xia, K.X. Wei, and W.H. Ma, Effects of slag treatment conditions on boron removal from metallurgical silicon by united gas-slag refining technology, Silicon, 2021. DOI: https://doi.org/10.1007/s12633-021-01175-4

[45]

R. Al-Khazraji, Y.Q. Li, and L.F. Zhang, Comparison between slag refining processes for B removal with metallurgical grade silicon and Si−Sn alloy, Metall. Res. Technol., 115(2018), No. 3, art. No. 312.

[46]

Li M, Utigard T, Barati M. Removal of boron and phosphorus from silicon using CaO−SiO2−Na2O−Al2O3 flux. Metall. Mater. Trans. B, 2014, 45(1): 221.

[47]

Qian GY, Sun YW, Wang Z, Wei KX, Ma WH. Novel application of electroslag remelting refining in the removal of boron and phosphorus from silicon alloy for silicon recovery. ACS Sustain. Chem. Eng., 2021, 9(7): 2962.

[48]

Safarian J, Tranell G, Tangstad M. Thermodynamic and kinetic behavior of B and Na through the contact of B-doped silicon with Na2O−SiO2 slags. Metall. Mater. Trans. B, 2013, 44(3): 571.

[49]

Tanahashi M, Fujisawa T, Yamauchi C. Oxidative removal of boron from molten silicon by CaO-based flux treatment with oxygen gas injection. Metall. Mater. Trans. B, 2014, 45(2): 629.

[50]

Al-khazraji R, Li YQ, Zhang LF. Boron separation from Si−Sn alloy by slag treatment. Int. J. Miner. Metall. Mater., 2018, 25(12): 1439.

[51]

Nordstrand EF, Tangstad M. Removal of boron from silicon by moist hydrogen gas. Metall. Mater. Trans. B, 2012, 43(4): 814.

[52]

Sortland S, Tangstad M. Boron removal from silicon melts by H2O/H2 gas blowing: Mass transfer in gas and melt. Metall. Mater. Trans. E, 2014, 1, 211

[53]

Wu JJ, Li YL, Ma WH, Liu K, Wei KX, Xie KQ, Yang B, Dai YN. Impurities removal from metallurgical grade silicon using gas blowing refining techniques. Silicon, 2014, 6(1): 79.

[54]

Chen ZY, Morita K. Iron-catalyzed boron removal from molten silicon in ammonia. Metall. Mater. Trans. E, 2016, 3, 228

[55]

Chen ZY, Morita K. Removal of boron from molten Si and Si−Cu using ammonia containing gas. Silicon, 2018, 10(5): 1809.

[56]

Chen H, Wang Y, Zheng WJ, Li QC, Yuan XZ, Morita K. Model implementation of boron removal using CaCl2−CaO−SiO2 slag system for solar-grade silicon. Metall. Mater. Trans. B, 2017, 48(6): 3219.

[57]

Lu CH, Huang LQ, Lai HX, Fang M, Ma WH, Xing PF, Zhang L, Li JT, Luo XT. Effects of slag refining on boron removal from metallurgical-grade silicon using recycled slag with active component. Sep. Sci. Technol., 2015, 50(17): 2759

[58]

Lu CH, Tang TY, Sheng ZL, Xing PF, Luo XT. Improved removal of boron from metallurgical-grade Si by CaO−SiO2−CaCl2 slag refining with intermittent CaCl2 addition. Vacuum, 2017, 143, 7.

[59]

Wang Y, Morita K. Measurement of the phase diagram of the SiO2−CaCl2 system and liquid area study of the SiO2−CaO−CaCl2 system. Metall. Mater. Trans. B, 2016, 47(3): 1542.

[60]

Huang LQ, Lai HX, Gan CH, Xiong HP, Xing PF, Luo XT. Separation of boron and phosphorus from Cu-alloyed metallurgical grade silicon by CaO−SiO2−CaCl2 slag treatment. Sep. Purif. Technol., 2016, 170, 408.

[61]

Chen ZY, You YL, Morita K. Sustainable simultaneous synthesis of titanium-bearing materials from silicon waste and TiO2-bearing slag. ACS Sustainable Chem. Eng., 2018, 6(8): 10742.

[62]

Wang Y, Morita K. Reaction mechanism and kinetics of boron removal from molten silicon by CaO−SiO2−CaCl2 slag treatment. J. Sustain. Metall., 2015, 1(2): 126.

[63]

Al-Khazraji R. Boron removal from metallurgical grade silicon and Si-Sn alloy through slag refining with gas blowing. Funct. Mater., 2018, 25(3): 625.

[64]

Wu JJ, Zhou YQ, Ma WH, Xu M, Yang B. Synergistic separation behavior of boron in metallurgical grade silicon using a combined slagging and gas blowing refining technique. Metall. Mater. Trans. B, 2017, 48(1): 22.

[65]

Li YQ, Chen W, Lu J, Lei XH, Zhang LF. Boron removal from metallurgical-grade silicon by slag refining and gas blowing techniques: Experiments and simulations. J. Electron. Mater., 2021, 50(3): 1386.

[66]

Safarian J, Tangstad M. Vacuum refining of molten silicon. Metall. Mater. Trans. B, 2012, 43(6): 1427.

[67]

Jiang DC, Ren SQ, Shi S, Dong W, Qiu JS, Tan Y, Li JY. Phosphorus removal from silicon by vacuum refining and directional solidification. J. Electron. Mater., 2014, 43(2): 314.

[68]

Zheng SS, Engh TA, Tangstad M, Luo XT. Numerical simulation of phosphorus removal from silicon by induction vacuum refining. Metall. Mater. Trans. A, 2011, 42(8): 2214.

[69]

Hoseinpur A, Andersson S, Tang K, Safarian J. Selective vacuum evaporation by the control of the chemistry of gas phase in vacuum refining of Si. Langmuir, 2021, 37(24): 7473.

[70]

A. Hoseinpur and J. Safarian, Vacuum refining of silicon at ultra-high temperatures, Vacuum, 184(2021), art. No. 109924.

[71]

Wei KX, Zheng DM, Ma WH, Yang B, Dai YN. Study on Al removal from MG−Si by vacuum refining. Silicon, 2015, 7(3): 269.

[72]

Tan Y, Ren SQ, Shi S, Wen ST, Jiang DC, Dong W, Ji M, Sun SH. Removal of aluminum and calcium in multicrystalline silicon by vacuum induction melting and directional solidification. Vacuum, 2014, 99, 272.

[73]

Ren SQ, Li PT, Jiang DC, Shi S, Li JY, Wen ST, Tan Y. Removal of Cu, Mn and Na in multicrystalline silicon by directional solidification under low vacuum condition. Vacuum, 2015, 115, 108.

[74]

Murray JL, McAlister AJ. The Al−Si (aluminum-silicon) system. Bull. Alloy Phase Diagr., 1984, 5(1): 74.

[75]

Hopkins RH, Rohatgi A. Impurity effects in silicon for high efficiency solar cells. J. Cryst. Growth, 1986, 75(1): 67.

[76]

Lei Y, Ma WH, Sun LE, Wu JJ, Dai YN, Morita K. Removal of B from Si by Hf addition during Al−Si solvent refining process. Sci. Technol. Adv. Mater., 2016, 17(1): 12.

[77]

Tang K, Øvrelid EJ, Tranell G, Tangstad M. Thermochemical and kinetic databases for the solar cell silicon materials. Crystal Growth of Si for Solar Cells, 2009, Berlin, Heidelberg, Springer, 219.

[78]

Yoshikawa T. Physic-Chemistry on Silicon Refining at Low-Temperature Using Si−Al Solvent, 2005, Tokyo, The University of Tokyo [Dissertation]

[79]

Yoshikawa T, Morita K. Continuous solidification of Si from Si−Al melt under the induction heating. ISIJ Int., 2007, 47(4): 582.

[80]

Q.C. Zou, H. Tian, Z.X. Zhang, C.Z. Sun, J.C. Jie, N. Han, and X.Z. An, Controlling segregation behavior of primary Si in hypereutectic Al−Si alloy by electromagnetic stirring, Metals, 10(2020), No. 9, art. No. 1129.

[81]

Lv GQ, Bao Y, Zhang YF, He YF, Ma WH, Lei Y. Effects of electromagnetic directional solidification conditions on the separation of primary silicon from Al−Si alloy with high Si content. Mater. Sci. Semicond. Process., 2018, 81, 139.

[82]

W.Y. Jiang, W.Z. Yu, J. Li, Z.X. You, C.M. Li, and X.W. Lv, Segregation and morphological evolution of Si phase during electromagnetic directional solidification of hypereutectic Al−Si alloys, Mater., 12(2018), No. 1, art. No. 10.

[83]

Li JW, Guo ZC, Li JC, Yu LZ. Super gravity separation of purified Si from solvent refining with the Al−Si alloy system for solar grade silicon. Silicon, 2015, 7(3): 239.

[84]

Nishi Y, Kang Y, Morita K. Control of Si crystal growth during solidification of Si−Al melt. Mater. Trans., 2010, 51(7): 1227.

[85]

J.W. Li, J.C. Li, Y.H. Lin, J. Shi, B.Y. Ban, G.C. Liu, W. Yang, and J. Chen, Separation and recovery of refined Si from Al−Si melt by modified czochralski method, Materials, 13(2020), No. 4, art. No. 996.

[86]

Yoshikawa T, Arimura K, Morita K. Boron removal by titanium addition in solidification refining of silicon with Si−Al melt. Metall. Mater. Trans. B, 2005, 36(6): 837.

[87]

Bai XL, Ban BY, Li JW, Fu ZQ, Peng ZJ, Wang CB, Chen J. Effect of Ti addition on B removal during silicon refining in Al−30%Si alloy directional solidification. Sep. Purif. Technol., 2017, 174, 345.

[88]

Ban BY, Li JW, Bai XL, He QX, Chen J, Dai SY. Mechanism of B removal by solvent refining of silicon in Al−Si melt with Ti addition. J. Alloys Compd., 2016, 672, 489.

[89]

Lei Y, Ma WH, Sun LE, Wu JJ, Morita K. Effects of small amounts of transition metals on boron removal during electromagnetic solidification purification of silicon with Al−Si solvent. Sep. Purif. Technol., 2016, 162, 20.

[90]

Lei Y, Qiu P, Chen K, Chen XH, Ma WH, Wu JJ, Wei KX, Li SY, Lv GQ, Qiu JJ. Mechanism of ZrB2 formation in Al−Si alloy and application in Si purification. ACS Sustainable Chem. Eng., 2019, 7(15): 12990.

[91]

Yoshikawa T, Morita K. Removal of B from Si by solidification refining with Si−Al melts. Metall. Mater. Trans. B, 2005, 36, 731.

[92]

Lei Y, Ma WH, Wu JJ, Wei KX, Li SY, Morita K. Impurity phases and their removal in Si purification with Al−Si alloy using transition metals as additives. J. Alloys Compd., 2018, 734, 250.

[93]

Chen K, Chen XH, Lei Y, Ma WH, Han JX, Yang ZH. Mechanism of enhancing B removal from Si with V addition using Al−Si as the refining solvent. Sep. Purif. Technol., 2018, 203, 168.

[94]

Yu WZ, Xue Y, Mei J, Zhou XZ, Xiong ML, Zhang SF. Segregation and removal of transition metal impurities during the directional solidification refining of silicon with Al−Si solvent. J. Alloys Compd., 2019, 805, 198.

[95]

C. Chen, B.Y. Ban, J.F. Sun, J.W. Li, X.S. Jiang, J. Shi, J. Chen, J.B. Jia, H. Sakiani, and S.H. Tabaian, Mechanism of boron removal of primary Si phases and morphology evolution of impurity phases during slow cooling solidification refining of Al−30wt.%Si alloy with Zr additions, J. Alloys Compd., 860(2021), art. No. 158517.

[96]

C. Chen, J.W. Li, X.S. Jiang, W.F. Song, J. Shi, B.Y. Ban, and J. Chen, Effect of impurity phase migration on Al−30wt.%Si solvent refining with Zr additions during directional solidification, Sep. Purif. Technol., 278(2021), art. No. 119572.

[97]

Y.L. Li, L.D. Liu, and J. Chen, Effect of mechanical stirring on silicon purification during Al−Si solvent refining, J. Cryst. Growth, 553(2021), art. No. 125943.

[98]

Zou QC, Han N, Shen ZF, Jie JC, Li TJ. Effects of AlB2/AlP phase and electromagnetic stirring on impurity B/P removal in the solidification process of Al−30Si alloy. Sep. Purif. Technol., 2018, 207, 151.

[99]

He YF, Yang X, Bao Y, Li SY, Chen ZJ, Ma WH, Lv GQ. Effects of silicon content on the separation and purification of primary silicon from hypereutectic aluminum-silicon alloy by alternating electromagnetic directional solidification. Sep. Purif. Technol., 2019, 219, 25.

[100]

T. Xiao, G.Q. Lv, Y. Bao, W.C. Duo, L. Xu, and W.H. Ma, Electromagnetic separation of coarse Al−Si melts: The migration behavior of iron-rich phase and continuous growth of primary silicon, J. Alloys Compd., 819(2020), art. No. 153006.

[101]

G.Y. Qian, L.Y. Sun, H. Chen, Z. Wang, K.X. Wei, and W.H. Ma, Enhancing impurities removal from Si by controlling crystal growth in directional solidification refining with Al−Si alloy, J. Alloys Compd., 820(2020), art. No. 153300.

[102]

Ban BY, Zhang TT, Li JW, Bai XL, Pan X, Chen J, Hadi Tabaian S. Solidification refining of MG−Si by Al−Si alloy under rotating electromagnetic field with varying frequencies. Sep. Purif. Technol., 2018, 202, 266.

[103]

Olesinski RW, Abbaschian GJ. The Si−Sn (silicon-tin) system. Bull. Alloy Phase Diagr., 1984, 5(3): 273.

[104]

Zhao LX, Wang Z, Guo ZC, Li CY. Low-temperature purification process of metallurgical silicon. Trans. Nonferrous Met. Soc. China, 2011, 21(5): 1185.

[105]

Ma XD, Yoshikawa T, Morita K. Phase relations and thermodynamic property of boron in the silicon-tin melt at 1673 K. J. Alloys Compd., 2012, 529, 12.

[106]

Yoshikawa T, Morita K. Thermodynamic property of B in molten Si and phase relations in the Si−Al−B system. Mater. Trans., 2005, 46(6): 1335.

[107]

Hosseinpour A, Tafaghodi Khajavi L. Slag refining of silicon and silicon alloys: A review. Miner. Process. Extr. Metall. Rev., 2018, 39(5): 308.

[108]

Thomas S, Barati M, Morita K. A review of slag refining of silicon alloys. JOM, 2021, 73(1): 282.

[109]

Lei Y, Ma WH, Wu JJ, Wei KX, Lv GQ, Li SY, Morita K. Purification of metallurgical-grade silicon using Si−Sn alloy in presence of Hf, Zr, or Ti. Mater. Sci. Semicond. Process., 2018, 88, 97.

[110]

Ren YS, Wang HP, Morita K. Effect of Zr addition on B-removal behaviour during solidification purification of Si with Si−Sn solvent. Vacuum, 2019, 167, 319.

[111]

Hu L, Wang Z, Gong XZ, Guo ZC, Zhang H. Purification of metallurgical-grade silicon by Sn−Si refining system with calcium addition. Sep. Purif. Technol., 2013, 118, 699.

[112]

Ma XD, Yoshikawa T, Morita K. Si growth by directional solidification of Si−Sn alloys to produce solar-grade Si. J. Cryst. Growth, 2013, 377, 192.

[113]

Ma XD, Yoshikawa T, Morita K. Elemental properties of Si: Si−Sn solid solution and diffusion coefficient in the Si−Sn melt. Sci. Adv. Mater., 2014, 6(8): 1697.

[114]

Zhang LF, Ma YS, Li YQ. Preparing crystalline silicon from Si−Sn solvent by zone melting directional solidification method. Mater. Sci. Semicond. Process., 2017, 71, 12.

[115]

Ren YS, Wang HP, Morita K. Growth control and enrichment of Si crystals from Si−Sn melt by directional solidification. Vacuum, 2018, 158, 86.

[116]

Ma XD, Lei Y, Yoshikawa T, Zhao BJ, Morita K. Effect of solidification conditions on the silicon growth and refining using Si−Sn melt. J. Cryst. Growth, 2015, 430, 98.

[117]

Huang F, Zhao L, Liu L, Hu ZL, Chen RR, Dong ZL. Separation and purification of Si from Sn−30Si alloy by electromagnetic semi-continuous directional solidification. Mater. Sci. Semicond. Process., 2019, 99, 54.

[118]

Li TY, Guo L, Wang Z, Guo ZC. Purification of metallurgical-grade silicon combining Sn−Si solvent refining with gas pressure filtration. RSC Adv., 2020, 10(19): 11435.

[119]

Khajavi LT, Morita K, Yoshikawa T, Barati M. Removal of boron from silicon by solvent refining using ferrosilicon alloys. Metall. Mater. Trans. B, 2015, 46(2): 615.

[120]

Khajavi LT, Morita K, Yoshikawa T, Barati M. Thermodynamics of boron distribution in solvent refining of silicon using ferrosilicon alloys. J. Alloys Compd., 2015, 619, 634.

[121]

Khajavi LT, Barati M. Thermodynamics of phosphorus removal from silicon in solvent refining of silicon. High Temp. Mater. Process., 2012, 31(4–5): 627.

[122]

Khajavi LT, Barati M. Thermodynamics of phosphorus in solvent refining of silicon using ferrosilicon alloys. Metall. Mater. Trans. B, 2017, 48(1): 268.

[123]

Yan W, Yang YD, Chen WQ, Barati M, McLean A. Thermodynamic assessment of Si−P and Si−Fe−P alloys for solar grade silicon refining via vacuum levitation. Vacuum, 2017, 135, 101.

[124]

H. Sakiani, S.H. Tabaian, J. Chen, J.W. Li, and B.Y. Ban, Investigating boron and phosphorus removal from silicon by Si−Ti and Si−Ti−Fe alloying systems, Sep. Purif. Technol., 250(2020), art. No. 117227.

[125]

Deng XC, Li S, Wen JH, Wei KX, Zhang MY, Yang X, Ma WH. Mechanism of enhancing phosphorus removal from metallurgical grade silicon by Si−Fe−Ti phase reconstruction. Metall. Mater. Trans. B, 2021, 52(2): 625.

[126]

Hosseinpour A, Tafaghodi Khajavi L. Thermodynamics of boron removal in slag refining of Fe−Si alloy. J. Alloys Compd., 2018, 768, 545.

[127]

Hosseinpour A, Tafaghodi Khajavi L. Phosphorus removal from Si−Fe alloy using SiO2−Al2O3−CaO slag. Metall. Mater. Trans. B, 2019, 50(4): 1773.

[128]

Taposhe GIA, Khajavi LT. Removal of phosphorus from Si−Fe alloy by CaO−Al2O3−SiO2−Na2O slag refining. JOM, 2021, 73(2): 729.

[129]

Esfahani S, Barati M. Purification of metallurgical silicon using iron as impurity getter part I: Growth and separation of Si. Met. Mater. Int., 2011, 17(5): 823.

[130]

Esfahani S, Barati M. Purification of metallurgical silicon using iron as impurity getter, part II: Extent of silicon purification. Met. Mater. Int., 2011, 17(6): 1009.

[131]

Li YQ, Liu CC, Lei XH, Zhang LF, Tsai TH. Bulk Si production from Si−Fe melts under temperature gradients, part I: Growth and characterization. J. Mater. Res. Technol., 2020, 9(6): 12595.

[132]

Y.Q. Li, X.H. Lei, C.C. Liu, and L.F. Zhang, Bulk Si production from Si−Fe melts by directional-solidification, part II: Element distribution, Mater. Sci. Semicond. Process., 128(2021), art. No. 105754.

[133]

Olesinski RW, Abbaschian GJ. The Cu−Si (copper-silicon) system. Bull. Alloy Phase Diagr., 1986, 7(2): 170.

[134]

Mitrašinović AM, Utigard TA. Refining silicon for solar cell application by copper alloying. Silicon, 2009, 1(4): 239.

[135]

Huang LQ, Lai HX, Lu CH, Fang M, Ma WH, Xing PF, Li JT, Luo XT. Enhancement in extraction of boron and phosphorus from metallurgical grade silicon by copper alloying and aqua regia leaching. Hydrometallurgy, 2016, 161, 14.

[136]

Huang LQ, Chen J, Danaei A, Thomas S, Huang LY, Luo XT, Barati M. Effect of Ti addition to Cu−Si alloy on the boron distribution in various phases. J. Alloys Compd., 2018, 734, 235.

[137]

Huang LQ, Danaei A, Thomas S, Xing PF, Li JT, Luo XT, Barati M. Solvent extraction of phosphorus from Si−Cu refining system with calcium addition. Sep. Purif. Technol., 2018, 204, 205.

[138]

Fang M, Lu CH, Lai HX, Huang LQ, Chen J, Ma WH, Sheng ZL, Shen JN, Li JT, Luo XT. Effect of solidification rate on representative impurities distribution in Si−Cu alloy. Mater. Sci. Technol., 2013, 29(7): 861.

[139]

Ren YS, Ueda S, Morita K. Formation mechanism of ZrB2 in a Si−Cu melt and its potential application for refining Si and recycling Si waste. ACS Sustainable Chem. Eng., 2019, 7(24): 20107.

[140]

Ren YS, Morita K. Low-temperature process for the fabrication of low-boron content bulk Si from Si−Cu solution with Zr addition. ACS Sustainable Chem. Eng., 2020, 8(17): 6853.

[141]

Morito H, Uchikoshi M, Yamane H. Boron removal by dissolution and recrystallization of silicon in a sodium-silicon solution. Sep. Purif. Technol., 2013, 118, 723.

[142]

Morito H, Karahashi T, Uchikoshi M, Isshiki M, Yamane H. Low-temperature purification of silicon by dissolution and solution growth in sodium solvent. Silicon, 2012, 4(2): 121.

[143]

Li JW, Ban BY, Li YL, Bai XL, Zhang TT, Chen J. Removal of impurities from metallurgical grade silicon during Ga−Si solvent refining. Silicon, 2017, 9(1): 77.

[144]

C.T. Zhang, H.X. Lai, Y.H. Zhang, Z.L. Sheng, J.T. Li, P.F. Xing, and X.T. Luo, Extraction of phosphorus from metallurgical grade silicon using a combined process of Si−Al−Ca solvent refining and CaO−CaF2 slag treatment, Sep. Purif. Technol., 232(2020), art. No. 115954.

[145]

Li YQ, Tan Y, Li JY, Morita K. Si purity control and separation from Si−Al alloy melt with Zn addition. J. Alloys Compd., 2014, 611, 267.

[146]

Li JY, Liu Y, Tan Y, Li YQ, Zhang L, Wu SR, Jia PJ. Effect of tin addition on primary silicon recovery in Si−Al melt during solidification refining of silicon. J. Cryst. Growth, 2013, 371, 1.

[147]

Li YQ, Tan Y, Li JY, Xu Q, Liu Y. Effect of Sn content on microstructure and boron distribution in Si−Al alloy. J. Alloys Compd., 2014, 583, 85.

[148]

Johnston MD, Barati M. Calcium and titanium as impurity getter metals in purification of silicon. Sep. Purif. Technol., 2013, 107, 129.

[149]

Lei Y, Ma WH, Lv GQ, Wei KX, Li SY, Morita K. Purification of metallurgical-grade silicon using zirconium as an impurity getter. Sep. Purif. Technol., 2017, 173, 364.

[150]

C.T. Zhang, W. Sheng, L.Q. Huang, S. Zhang, Y.H. Zhang, H.X. Cai, J.S. Meng, and X.T. Luo, Vanadium as an impurity trapper for purification of metallurgical-grade silicon, Sep. Purif. Technol., 260(2021), art. No. 118199.

[151]

Y.S. Ren, H. Chen, T. Mizutani, W.H. Ma, Y. Zeng, and K. Morita, Efficient separation of bulk Si and enhanced B removal by Si−Sn-Cu ternary solvent refining with Zr addition, Sep. Purif. Technol., 275(2021), art. No. 119242.

[152]

H. Chen, Y.S. Ren, W.H. Ma, and Y. Zeng, Distribution behaviour of boron between ZrTiHfCuNi high entropy alloy and silicon, Sep. Purif. Technol., 271(2021), art. No. 118863.

[153]

Mei J, Yu WZ, Hou P, Xue Y, Xin YT, Yan K. Purification of metallurgical grade silicon via the Mg−Si alloy refining and acid leaching process. Silicon, 2021, 13(2): 341.

[154]

M.Y. Zhu, D. Wan, K. Tang, and J. Safarian, Impurity removal from Si by Si−Ca−Mg ternary alloying-leaching system, Mater. Des., 198(2021), art. No. 109348.

[155]

Zhu MY, Yue SY, Tang K, Safarian J. New insights into silicon purification by alloying-leaching refining: A comparative study of Mg−Si, Ca−Si, and Ca−Mg−Si systems. ACS Sustainable Chem. Eng., 2020, 8(42): 15953.

[156]

C. Wang, Y. Lei, W.H. Ma, and P. Qiu, An approach for simultaneous treatments of diamond wire saw silicon kerf and Ti-bearing blast furnace slag, J. Hazard. Mater., 401(2021), art. No. 123446.

[157]

Zhang YH, Sheng W, Huang LQ, Zhang S, Chen GY, Zhang CT, Cai HX, Meng JS, Luo XT. Preparation of low-boron silicon from diamond wire sawing waste by pressure-less sintering and CaO−SiO2 slag treatment. ACS Sustainable Chem. Eng., 2020, 8(31): 11755.

[158]

S.C. Yang, X.H. Wan, K.X. Wei, W.H. Ma, and Z. Wang, Investigation of Na2CO3−CaO−NaCl (or Na3AlF6) additives for the remanufacturing of silicon from diamond wire saw silicon powder waste, J. Clean. Prod., 286(2021), art. No. 125525.

AI Summary AI Mindmap
PDF

158

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/