Electrochemically triggered decoupled transport behaviors in intercalated graphite: From energy storage to enhanced electromagnetic applications

Ya Chen , Kailun Zhang , Na Li , Wei Guan , Zhiyuan Li , Haosen Chen , Shuqiang Jiao , Weili Song

International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (1) : 33 -43.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (1) : 33 -43. DOI: 10.1007/s12613-022-2416-5
Article

Electrochemically triggered decoupled transport behaviors in intercalated graphite: From energy storage to enhanced electromagnetic applications

Author information +
History +
PDF

Abstract

Pyrolytic graphite (PG) with highly aligned graphene layers, present anisotropic electrical and thermal transport behavior, which is attractive in electronic, electrocatalyst and energy storage. Such pristine PG could meeting the limit of electrical conductivity (∼2.5 × 104 S·cm−1), although efforts have been made for achieving high-purity sp2 hybridized carbon. For manipulating the electrical conductivity of PG, a facile and efficient electrochemical strategy is demonstrated to enhance electrical transport ability via reversible intercalation/de-intercalation of AlCl4 into the graphitic interlayers. With the stage evolution at different voltages, variable electrical and thermal transport behaviors could be achieved via controlling AlCl4 concentrations in the PG because of substantial variation in the electronic density of states. Such evolution leads to decoupled electrical and thermal transport (opposite variation trend) in the in-plane and out-of-plane directions, and the in-plane electrical conductivity of the pristine PG (1.25 × 104 S·cm−1) could be massively promoted to 4.09 × 104 S·cm−1 (AlCl4 intercalated PG), much better than the pristine bulk graphitic papers used for the electrical transport and electromagnetic shielding. The fundamental mechanism of decoupled transport feature and electrochemical strategy here could be extended into other anisotropic conductive bulks for achieving unusual behaviors.

Keywords

electrochemically manipulatable / aluminum battery / graphite intercalation compounds / transport behavior / electromagnetic interference shielding

Cite this article

Download citation ▾
Ya Chen, Kailun Zhang, Na Li, Wei Guan, Zhiyuan Li, Haosen Chen, Shuqiang Jiao, Weili Song. Electrochemically triggered decoupled transport behaviors in intercalated graphite: From energy storage to enhanced electromagnetic applications. International Journal of Minerals, Metallurgy, and Materials, 2023, 30(1): 33-43 DOI:10.1007/s12613-022-2416-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Tu JG, Wang JX, Li SJ, Song WL, Wang MY, Zhu HM, Jiao SQ. High-efficiency transformation of amorphous carbon into graphite nanoflakes for stable aluminum-ion battery cathodes. Nanoscale, 2019, 11(26): 12537.

[2]

Peng JJ, Chen NQ, He R, Wang ZY, Dai S, Jin XB. Electrochemically driven transformation of amorphous carbons to crystalline graphite nanoflakes: A facile and mild graphitization method. Angew. Chem. Int. Ed., 2017, 56(7): 1751.

[3]

Song WL, Veca LM, Anderson A, Cao MS, Cao L, Sun YP. Light-weight nanocomposite materials with enhanced thermal transport properties. Nanotechnol. Rev., 2012, 1(4): 363.

[4]

Dresselhaus MS, Dresselhaus G. Intercalation compounds of graphite. Adv. Phys., 1981, 30(2): 139.

[5]

Besenhard JO, Fritz HP. The electrochemistry of black carbons. Angew. Chem. Int. Ed., 1983, 22(12): 950.

[6]

Placke T, Schmuelling G, Kloepsch R, Meister P, Fromm O, Hilbig P, Meyer HW, Winter M. In situ X-ray diffraction studies of cation and anion intercalation into graphitic carbons for electrochemical energy storage applications. Z. Anorg. Allg. Chem., 2014, 640(10): 1996.

[7]

Matsumoto R, Okabe Y. Electrical conductivity and air stability of FeCl3, CuCl2, MoCl5, and SbCl5 graphite intercalation compounds prepared from flexible graphite sheets. Synth. Met., 2016, 212, 62.

[8]

Zabel H, Solin SA. Graphite Intercalation Compounds II: Transport and Electronic Properties, 1992, Berlin, Springer

[9]

Veca LM, Meziani MJ, Wang W, Wang X, Lu FS, Zhang PY, Lin Y, Fee R, Connell JW, Sun YP. Carbon nanosheets for polymeric nanocomposites with high thermal conductivity. Adv. Mater., 2009, 21(20): 2088.

[10]

Kohn W, Sham LJ. Self-consistent equations including exchange and correlation effects. Phys. Rev., 1965, 140(4A): A1133.

[11]

Nityananda R, Hohenberg P, Kohn W. Inhomogeneous electron gas. Resonance, 2017, 22(8): 809.

[12]

Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77(18): 3865.

[13]

Blöchl PE. Projector augmented-wave method. Phys. Rev. B, 1994, 50(24): 17953.

[14]

J. Chem. Phys., 2010, 132(15) art. No. 154104

[15]

Grimme S, Ehrlich S, Goerigk L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem., 2011, 32(7): 1456.

[16]

Zabel H, Solin S. Graphite Intercalation Compounds I: Structure and Dynamics, 1990, Berlin, Springer

[17]

Xu JH, Turney DE, Jadhav AL, Messinger RJ. Effects of graphite structure and ion transport on the electrochemical properties of rechargeable aluminum-graphite batteries. ACS Appl. Energy Mater., 2019, 2(11): 7799.

[18]

Venkatachalam S, Depriester M, Sahraoui AH, Capoen B, Ammar MR, Hourlier D. Thermal conductivity of kapton-derived carbon. Carbon, 2017, 114, 134.

[19]

Lin MC, Gong M, Lu BG, Wu YP, Wang DY, Guan MY, Angell M, Chen CX, Yang J, Hwang BJ, Dai HJ. An ultrafast rechargeable aluminium-ion battery. Nature, 2015, 520(7547): 324.

[20]

Jung SC, Kang Y, Yoo D, Choi JW, Han Y. Flexible few-layered graphene for the ultrafast rechargeable aluminumion battery. J. Phys. Chem. C, 2016, 120(13): 13384.

[21]

Mckerracher RD, Holland A, Cruden A, Wills RGA. Comparison of carbon materials as cathodes for the aluminiumion battery. Carbon, 2019, 144, 333.

[22]

Adv. Funct. Mater., 2020, 30(43) art. No. 2003913

[23]

Fujita T, Chen H, Wang KT, He CL, Wang YB, Dodbiba G, Wei YZ. Reduction, reuse and recycle of spent Liion batteries for automobiles: A review. Int. J. Miner. Metall. Mater., 2021, 28(2): 179.

[24]

Bhauriyal P, Mahata A, Pathak B. The staging mechanism of AlCl4 intercalation in a graphite electrode for an aluminium-ion battery. Phys. Chem. Chem. Phys., 2017, 19(11): 7980.

[25]

Sui Y, Liu C, Masse R, Neale Z. Dual-ion batteries: the emerging alternative rechargeable batteries. Energy Storage Mater., 2020, 25, 1.

[26]

Elia GA, Hasa I, Greco G, Diemant T, Marquardt K, Hoeppner K, Behm RJ, Hoell A, Passerini S, Hahn R. Insights into the reversibility of aluminum graphite batteries. J. Mater. Chem. A, 2017, 5(20): 9682.

[27]

Ju BY, Yang WS, Zhang Q, Hussain M, Xiu ZY, Qiao J, Wu GH. Research progress on the characterization and repair of graphene defects. Int. J. Miner. Metall. Mater., 2020, 27(9): 1179.

[28]

Takahashi S, Koura N, Kohara S, Saboungi ML, Curtiss LA. Technological and scientific issues of room-temperature molten salts. Plasmas Ions, 1999, 2(3–4): 91.

[29]

Yang HB, Wu L, Jiang B, Lei B, Yuan M, Xie HM, Atrens A, Song JF, Huang GS, Pan FS. Discharge properties of Mg-Sn-Y alloys as anodes for Mg-air batteries. Int. J. Miner. Metall. Mater., 2021, 28(10): 1705.

[30]

Kim H, Hong J, Yoon G, Kim H, Park KY, Park MS, Yoon WS, Kang K. Sodium intercalation chemistry in graphite. Energy Environ. Sci., 2015, 8(10): 2963.

[31]

Patterson AL. The scherrer formula for X-ray particle size determination. Phys. Rev., 1939, 56(10): 978.

[32]

Placke T, Fromm O, Lux SF, Bieker P, Rothermel S, Meyer HW, Passerini S, Winter M. Reversible intercalation of bis(trifluoromethanesulfonyl)imide anions from an ionic liquid electrolyte into graphite for high performance dual-ion cells. J. Electrochem. Soc., 2012, 159(11): A1755.

[33]

Angell M, Pan CJ, Rong YM, Yuan CZ, Lin MC, Hwang BJ, Dai HJ. High Coulombic efficiency aluminum-ion battery using an AlCl3-urea ionic liquid analog electrolyte. PNAS, 2017, 114(5): 834.

[34]

Zhou XL, Liu QR, Jiang CL, Ji BF, Ji XL, Tang YB, Cheng HM. Strategies towards low-cost dual-ion batteries with high performance. Angew. Chem. Int. Ed., 2020, 59(10): 3802.

[35]

Jiang Q, Zhang WQ, Zhao JC, Rao PH, Mao JF. Superior sodium and lithium storage in strongly coupled amorphous Sb2S3 spheres and carbon nanotubes. Int. J. Miner. Metall. Mater., 2021, 28(7): 1194.

[36]

Adv. Mater., 2020, 32(14) art. No. 1907411

[37]

Adv. Mater. Interfaces, 2020, 7(7) art. No. 1901815

[38]

Liu YH, Zhang KY, Mo YL, Zhu L, Yu BW, Chen F, Fu Q. Hydrated aramid nanofiber network enhanced flexible expanded graphite films towards high EMI shielding and thermal properties. Compos. Sci. Technol., 2018, 168, 28.

[39]

Zhou EZ, Xi JB, Liu YJ, Xu Z, Guo Y, Peng L, Gao WW, Ying J, Chen ZC, Gao C. Large-area potassium-doped highly conductive graphene films for electromagnetic interference shielding. Nanoscale, 2017, 9(47): 18613.

[40]

Yan DX, Pang H, Li B, Vajtai R, Xu L, Ren PG, Wang JH, Li ZM. Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding. Adv. Funct. Mater., 2015, 25(4): 559.

[41]

Song WL, Guan XT, Fan LZ, Cao WQ, Wang CY, Zhao QL, Cao MS. Magnetic and conductive graphene papers toward thin layers of effective electromagnetic shielding. J. Mater. Chem. A, 2015, 3(5): 2097.

[42]

Shen B, Zhai WT, Zheng WG. Ultrathin flexible graphene film: An excellent thermal conducting material with efficient EMI shielding. Adv. Funct. Mater., 2014, 24(28): 4542.

[43]

Song WL, Cao MS, Fan LZ, Lu MM, Li Y, Wang CY, Ju HF. Highly ordered porous carbon/wax composites for effective electromagnetic attenuation and shielding. Carbon, 2014, 77, 130.

[44]

Song WL, Cao MS, Lu MM, Bi S, Wang CY, Liu J, Yuan J, Fan LZ. Flexible graphene/polymer composite films in sandwich structures for effective electromagnetic interference shielding. Carbon, 2014, 66, 67.

[45]

Song WL, Gong CC, Li HM, Cheng XD, Chen MJ, Yuan XJ, Chen HS, Yang YZ, Fang DN. Graphene-based sandwich structures for frequency selectable electromagnetic shielding. ACS Appl. Mater. Interfaces, 2017, 9(41): 36119.

[46]

Al-Saleh MH, Sundararaj U. Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon, 2009, 47(7): 1738.

AI Summary AI Mindmap
PDF

115

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/