Utilization of surface nanocrystalline to improve the bendability of AZ31 Mg alloy sheet

Jianyue Zhang , Xuzhe Zhao , De’an Meng , Qingyou Han

International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (7) : 1413 -1424.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (7) : 1413 -1424. DOI: 10.1007/s12613-022-2414-7
Article

Utilization of surface nanocrystalline to improve the bendability of AZ31 Mg alloy sheet

Author information +
History +
PDF

Abstract

A surface nanocrystalline was fabricated by ultrasonic shot peening (USSP) treatment at AZ31 Mg alloy. The effect of nanocrystalline thickness and its placed side (external or internal) on the bendability was studied by a V-bending test. Three durations, 5, 10, and 15 min, were applied to form the surface nanocrystalline with thicknesses of 51, 79, and 145 µm, respectively. Two-side treatment led to a similar bendability as that of as-received. One-side internal treatment for 5 min resulted in an improved bendability while the improvement was limited and degenerated for longer treatment. The improvement was related to the drawing back of the neutral axis. The one-side external treatment also improved the bendability, and the improvement was due to the redistribution of strain and stress during bending. With nanocrystalline at external side, it resulted in a larger stress but a smaller strain at the convex, which prevented the happening of crack during bending.

Keywords

AZ31 magnesium alloy / ultrasonic shot peening / surface nanocrystalline / bendability / neutral axis

Cite this article

Download citation ▾
Jianyue Zhang, Xuzhe Zhao, De’an Meng, Qingyou Han. Utilization of surface nanocrystalline to improve the bendability of AZ31 Mg alloy sheet. International Journal of Minerals, Metallurgy, and Materials, 2022, 29(7): 1413-1424 DOI:10.1007/s12613-022-2414-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Valiev RZ. Paradoxes of severe plastic deformation. Adv. Eng. Mater., 2003, 5(5): 296.

[2]

Lowe TC, Valiev RZ. The use of severe plastic deformation techniques in grain refinement. JOM, 2004, 56(10): 64.

[3]

Azushima A, Kopp R, Korhonen A, Yang DY, Micari F, Lahoti GD, Groche P, Yanagimoto J, Tsuji N, Rosochowski A, Yanagida A. Severe plastic deformation (SPD) processes for metals. CIRP Ann., 2008, 57(2): 716.

[4]

Valiev RZ, Estrin Y, Horita Z, Langdon TG, Zehetbauer MJ, Zhu YT. Producing bulk ultrafine-grained materials by severe plastic deformation: Ten years later. JOM, 2016, 68(4): 1216.

[5]

Rakita M, Wang M, Han QY, Liu YX, Yin F. Ultrasonic shot peening. Int. J. Comput. Mater. Sci. Surf. Eng., 2013, 5(3): 189

[6]

Han QY. Ultrasonic processing of materials. Metall. Mater. Trans. B, 2015, 46(4): 1603.

[7]

Liu G, Lu J, Lu K. Surface nanocrystallization of 316L stainless steel induced by ultrasonic shot peening. Mater. Sci. Eng. A, 2000, 286(1): 91.

[8]

Sun QQ, Han QY, Liu XT, Xu W, Li J. The effect of surface contamination on corrosion performance of ultrasonic shot peened 7150 Al alloy. Surf. Coat. Technol., 2017, 328, 469.

[9]

Sun QQ, Han QY, Xu R, Zhao KJ, Li J. Localized corrosion behaviour of AA7150 after ultrasonic shot peening: Corrosion depth vs. impact energy. Corros. Sci., 2018, 130, 218.

[10]

Q.Q. Sun and Q.Y. Han, Surface segregation phenomenon of surface severe plastic deformed Al-Zn-Mg-Cu alloys, Materialia, 11(2020), art. No. 100741.

[11]

Pandey V, Chattopadhyay K, Srinivas NCS, Singh V. Role of ultrasonic shot peening on low cycle fatigue behavior of 7075 aluminium alloy. Int. J. Fatigue, 2017, 103, 426.

[12]

Persenot T, Burr A, Plancher E, Buffière JY, Dendievel R, Martin G. Effect of ultrasonic shot peening on the surface defects of thin struts built by electron beam melting: Consequences on fatigue resistance. Addit. Manuf., 2019, 28, 821

[13]

Singh V, Pandey V, Kumar S, Srinivas NCS, Chattopadhyay K. Effect of ultrasonic shot peening on surface microstructure and fatigue behavior of structural alloys. Trans. Indian Inst. Met., 2016, 69(2): 295.

[14]

Liu Y, Jin B, Li DJ, Zeng XQ, Lu J. Wear behavior of nanocrystalline structured magnesium alloy induced by surface mechanical attrition treatment. Surf. Coat. Technol., 2015, 261, 219.

[15]

Xia SW, Liu Y, Fu DM, Jin B, Lu J. Effect of surface mechanical attrition treatment on tribological behavior of the AZ31 alloy. J. Mater. Sci. Technol., 2016, 32(12): 1245.

[16]

Wang XY, Li DY. Mechanical, electrochemical and tri-bological properties of nano-crystalline surface of 304 stainless steel. Wear, 2003, 255(7–12): 836.

[17]

Kumar S, Chattopadhyay K, Mahobia GS, Singh V. Hot corrosion behaviour of Ti-6Al-4V modified by ultrasonic shot peening. Mater. Des., 2016, 110, 196.

[18]

Jiang XP, Wang XY, Li JX, Li DY, Man CS, Shepard MJ, Zhai T. Enhancement of fatigue and corrosion properties of pure Ti by sandblasting. Mater. Sci. Eng. A, 2006, 429(1–2): 30.

[19]

Liu Y, Jin B, Lu J. Mechanical properties and thermal stability of nanocrystallized pure aluminum produced by surface mechanical attrition treatment. Mater. Sci. Eng. A, 2015, 636, 446.

[20]

Yin Z, Yang XC, Ma XL, Moering J, Yang J, Gong YL, Zhu YT, Zhu XK. Strength and ductility of gradient structured copper obtained by surface mechanical attrition treatment. Mater. Des., 2016, 105, 89.

[21]

Rai PK, Pandey V, Chattopadhyay K, Singhal LK, Singh V. Effect of ultrasonic shot peening on microstructure and mechanical properties of high-nitrogen austenitic stainless steel. J. Mater. Eng. Perform., 2014, 23(11): 4055.

[22]

Yang QS, Jiang B, Song B, Yu ZJ, He DW, Chai YF, Zhang JY, Pan FS. The effects of orientation control via tension—compression on microstructural evolution and mechanical behavior of AZ31 Mg alloy sheet. J. Magnes. Alloys, 2022, 10(2): 411.

[23]

Q.H. Wang, S.Y. Chen, B. Jiang, Z.Y. Jin, L.Y. Zhao, J.J. He, D.F. Zhang, G.S. Huang, and F.S. Pan, Grain size dependence of annealing strengthening of an extruded Mg-Gd-Zn alloy subjected to pre-compression deformation, J. Magnes. Alloys, (2021). https://doi.org/10.1016/j.jma.2021.03.015

[24]

Q.H. Wang, H.W. Zhai, L.T. Liu, H.B. Xia, B. Jiang, J. Zhao, D.L. Chen, and F.S. Pan, Novel Mg-Bi-Mn wrought alloys: The effects of extrusion temperature and Mn addition on their microstructures and mechanical properties, J. Magnes. Alloys, (2021). https://doi.org/10.1016/j.jma.2021.11.028

[25]

J.Y. Zhang, G.Y. Zhou, B. Jiang, A. Luo, X.Z. Zhao, A.T. Tang, and F.S. Pan, A novel Mg-CaMgSn master alloy for grain refinement in Mg-Al-based alloys, Metals, 11(2021), No. 11, art. No. 1722.

[26]

Yang HB, Wu L, Jiang B, Lei B, Yuan M, Xie HM, Atrens A, Song JF, Huang GS, Pan FS. Discharge properties of Mg-Sn-Y alloys as anodes for Mg-air batteries. Int. J. Miner. Metall. Mater., 2021, 28(10): 1705.

[27]

Ma YZ, Yang CL, Liu YJ, Yuan FS, Liang SS, Li HX, Zhang JS. Microstructure, mechanical, and corrosion properties of extruded low-alloyed Mg-xZn-0.2Ca alloys. J. Miner. Metall. Mater., 2019, 26(10): 1274.

[28]

Li Q, Lin X, Luo Q, Chen YA, Wang JF, Jiang B, Pan FS. Kinetics of the hydrogen absorption and desorption processes of hydrogen storage alloys: A review. Int. J. Miner. Metall. Mater., 2022, 29(1): 32.

[29]

J.Y. Zhang, P. Peng, J. She, B. Jiang, A.T. Tang, F.S. Pan, and Q.Y. Han, A study of the corrosion behavior of AZ31 Mg alloy in depth direction after surface nanocrystallization, Surf. Coat. Technol., 396(2020), art. No. 125968.

[30]

Zhang JY, Jian YX, Zhao XZ, Meng DA, Pan FS, Han QY. The tribological behavior of a surface-nanocrystallized magnesium alloy AZ31 sheet after ultrasonic shot peening treatment. J. Magnes. Alloys, 2021, 9(4): 1187.

[31]

Lin B, Zhang JY, Sun QQ, Han JH, Li HB, Wang S. Microstructure, corrosion behavior and hydrogen evolution of USSP processed AZ31 magnesium alloy with a surface layer containing amorphous Fe-rich composite. Int. J. Hydrogen Energy, 2021, 46(17): 10172.

[32]

Sun HQ, Shi YN, Zhang MX. Wear behaviour of AZ91D magnesium alloy with a nanocrystalline surface layer. Surf. Coat. Technol., 2008, 202(13): 2859.

[33]

Meng XC, Duan M, Luo L, Zhan DC, Jin B, Jin YH, Rao XX, Liu Y, Lu J. The deformation behavior of AZ31 Mg alloy with surface mechanical attrition treatment. Mater. Sci. Eng. A, 2017, 707, 636.

[34]

M. Duan, L. Luo, and Y. Liu, Microstructural evolution of AZ31 Mg alloy with surface mechanical attrition treatment: Grain and texture gradient, J. Alloys Compd., 823(2020), art. No. 153691.

[35]

Chen HL, Yang J, Zhou H, Moering J, Yin Z, Gong YL, Zhao KY. Mechanical properties of gradient structure Mg alloy. Metall. Mater. Trans. A, 2017, 48(9): 3961.

[36]

Ma E. Instabilities and ductility of nanocrystalline and ultrafine-grained metals. Scripta Mater., 2003, 49(7): 663.

[37]

Ma E. Four approaches to improve the tensile ductility of high-strength nanocrystalline metals. J. Mater. Eng. Perform., 2005, 14(4): 430.

[38]

Taub A, De Moor E, Luo A, Matlock DK, Speer JG, Vaidya U. Materials for automotive lightweighting. Annu. Rev. Mater. Res., 2019, 49, 327.

[39]

Luo AA. Magnesium: Current and potential automotive applications. JOM, 2002, 54(2): 42.

[40]

Zhang JY. Effect of Ultrasonic Shot Peening on Mechanical Properties and Corrosion Resistance of Mg Alloy Sheet, 2019, West Lafayette, Purdue University

[41]

Williamson GK, Hall WH. X-ray line broadening from filed aluminium and wolfram. Acta Metall., 1953, 1(1): 22.

[42]

Jiang B, Liu WJ, Qiu D, Zhang MX, Pan FS. Grain refinement of Ca addition in a twin-roll-cast Mg-3Al-1Zn alloy. Mater. Chem. Phys., 2012, 133(2–3): 611.

[43]

Mattei L, Daniel D, Guiglionda G, Klöcker H, Driver J. Strain localization and damage mechanisms during bending of AA6016 sheet. Mater. Sci. Eng. A, 2013, 559, 812.

[44]

Lee J, Lee K, Kim D, Choi H, Kim B. Spring-back and spring-go behaviors in bending of thick plates of high-strength steel at elevated temperature. Comput. Mater. Sci., 2015, 100, 76.

[45]

Wang CT, Kinzel G, Altan T. Mathematical modeling of plane-strain bending of sheet and plate. J. Mater. Process. Technol., 1993, 39(3–4): 279.

[46]

Engel B, Hassan H. Advanced model for calculation of the neutral axis shifting and the wall thickness distribution in rotary draw bending processes. Int. J. Mater. Metall. Eng., 2015, 9(2): 239

[47]

Engel B, Hassan HR. Investigation of neutral axis shifting in rotary draw bending processes for tubes. Steel Res. Int., 2014, 85(7): 1209.

[48]

Huang GS, Wang LF, Zhang H, Wang YX, Shi ZY, Pan FS. Evolution of neutral layer and microstructure of AZ31B magnesium alloy sheet during bending. Mater. Lett., 2013, 98, 47.

[49]

Wang LF, Huang GS, Pan FS, Vedani M. Effect of strain rate on the shift of neutral layer in AZ31B alloys during V-bending at warm conditions. Mater. Lett., 2015, 143, 44.

[50]

Wang LF, Huang GS, Han TZ, Mostaed E, Pan FS, Vedani M. Effect of twinning and detwinning on the springback and shift of neutral layer in AZ31 magnesium alloy sheets during V-bend. Mater. Des., 2015, 68, 80.

[51]

Yilamu K, Hino R, Hamasaki H, Yoshida F. Air bending and springback of stainless steel clad aluminum sheet. J. Mater. Process. Technol., 2010, 210(2): 272.

[52]

Kagzi SA, Gandhi AH, Dave HK, Raval HK. An analytical model for bending and springback of bimetallic sheets. Mech. Adv. Mater. Struct., 2016, 23(1): 80.

[53]

Chai YF, Song Y, Jiang B, Fu J, Jiang ZT, Yang QS, Sheng HR, Huang GS, Zhang DF, Pan FS. Comparison of microstructures and mechanical properties of composite extruded AZ31 sheets. J. Magnes. Alloys, 2019, 7(4): 545.

[54]

Kim IK, Hong SI. Effect of component layer thickness on the bending behaviors of roll-bonded tri-layered Mg/Al/STS clad composites. Mater. Des., 2013, 49, 935.

[55]

Huang GS, Wang YX, Wang LF, Han TZ, Pan FS. Effects of grain size on shift of neutral layer of AZ31 magnesium alloy under warm condition. Trans. Nonferrous Met. Soc. China, 2015, 25(3): 732.

[56]

Q.S. Yang, B. Jiang, L.F. Wang, J.H. Dai, J.Y. Zhang, and F.S. Pan, Enhanced formability of a magnesium alloy sheet via inplane pre-strain paths, J. Alloys Compd., 814(2020), art. No. 152278.

[57]

Yang QS, Dai QW, Lou C, Dai JH, Zhang JY, Jiang B, Pan FS. Twinning, grain orientation, and texture variations in Mg alloy processed by pre-rolling. Prog. Nat. Sci. Mater. Int., 2019, 29(2): 231.

AI Summary AI Mindmap
PDF

161

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/