Revealing the nucleation event of Mg-Al alloy induced by Fe impurity

Hengbin Liao , Liling Mo , Xiong Zhou , Zhizhong Yuan , Jun Du

International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (7) : 1317 -1321.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (7) : 1317 -1321. DOI: 10.1007/s12613-021-2406-z
Article

Revealing the nucleation event of Mg-Al alloy induced by Fe impurity

Author information +
History +
PDF

Abstract

This study revealed the nucleation event and grain refinement mechanism of Mg-Al alloy induced by Fe impurity. The following orientation relationship was observed between Al-Fe particle and α-Mg matrix in the Mg-3Al alloy containing Fe impurity using a focused ion beam aided transmission electron microscope technique: $(\bar 1011){[01\bar 11]_{{\rm{Mg}}}}//(01\bar 1){[011]_{{\rm{A}}{{\rm{l}}_2}{\rm{Fe}}}}$. Mg-3Al alloy was inoculated by adding 0.02wt% Fe to verify the nucleating potency of the Al2Fe phase for α-Mg grain. The results indicated that Mg-3Al alloy was effectively refined with an average grain size declining from 1135 to 540 µm. Among the potential Al-Fe phases of Mg-3Al-0.02Fe alloy, only the precipitation of the Al2Fe phase occurs earlier than that of α-Mg grain, and the Al2Fe phase is stable in the nucleation stage of α-Mg grain. Therefore, the Al2Fe particle is the only available nucleating site for Mg-Al alloy with Fe impurity. The heterogeneous nucleation event of α-Mg grain on the Al2Fe particle is responsible for the grain refinement of Mg-3Al alloy inoculated by Fe.

Keywords

grain refinement / Mg-Al alloy / Al-Fe particle / heterogeneous nucleation

Cite this article

Download citation ▾
Hengbin Liao, Liling Mo, Xiong Zhou, Zhizhong Yuan, Jun Du. Revealing the nucleation event of Mg-Al alloy induced by Fe impurity. International Journal of Minerals, Metallurgy, and Materials, 2022, 29(7): 1317-1321 DOI:10.1007/s12613-021-2406-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhang Z, Zhang JH, Wang J, et al. Toward the development of Mg alloys with simultaneously improved strength and ductility by refining grain size via the deformation process. Int. J. Miner. Metall. Mater., 2021, 28(1): 30.

[2]

P. Peng, A.T. Tang, J. She, et al., Significant improvement in yield stress of Mg-Gd-Mn alloy by forming bimodal grain structure, Mater. Sci. Eng. A, 803(2021), art. No. 140569.

[3]

Su JL, Teng J, Xu ZL, Li Y. Biodegradable magnesium-matrix composites: A review. Int. J. Miner. Metall. Mater., 2020, 27(6): 724.

[4]

Kang GZ, Li H. Review on cyclic plasticity of magnesium alloys: Experiments and constitutive models. Int. J. Miner. Metall. Mater., 2021, 28(4): 567.

[5]

Du J, Yao ZJ, Han S, Li WF. Discussion on grain refining mechanism of AM30 alloy inoculated by MgCO3. J. Magnesium Alloys, 2017, 5(2): 181.

[6]

Z. Fan, F. Gao, Y. Wang, H. Men, and L. Zhou, Effect of solutes on grain refinement, Prog. Mater. Sci., 123(2022), art. No. 100809.

[7]

Vinotha D, Raghukandan K, Pillai UTS, Pai BC. Grain refining mechanisms in magnesium alloys-An overview. Trans. Indian Inst. Met., 2009, 62(6): 521.

[8]

Qiu D, Zhang MX. The nucleation crystallography and wettability of Mg grains on active Al2Y inoculants in an Mg-10wt%Y Alloy. J. Alloys Compd., 2014, 586, 39.

[9]

Li CB, Yang SQ, Du J, Liao HB, Luo G. Synergistic refining mechanism of Mg-3%Al alloy refining by carbon inoculation combining with Ca addition. J. Magnesium Alloys, 2020, 8(4): 1090.

[10]

Liao HB, Zhan MY, Li CB, Ma ZQ, Du J. Grain refinement of Mg-Al alloys inoculated by MgAl2O4 powder. J. Magnesium Alloys, 2021, 9(4): 1211.

[11]

Chen T, Yuan Y, Liu TT, et al. Effect of Mn addition on melt purification and Fe tolerance in Mg alloys. JOM, 2021, 73(3): 892.

[12]

Ambat R, Davenport AJ, Scamans GM, Afseth A. Effect of iron-containing intermetallic particles on the corrosion behaviour of aluminium. Corros. Sci, 2006, 48(11): 3455.

[13]

Zhang C, Wu L, Huang GS, et al. et al., Effects of Fe concentration on microstructure and corrosion of Mg-6Al-1Zn-xFe alloys for fracturing balls applications. J. Mater. Sci. Technol., 2019, 35(9): 2086.

[14]

Ganjehfard K, Taghiabadi R, Noghani MT, Ghoncheh MH. Tensile properties and hot tearing susceptibility of cast Al-Cu alloys containing excess Fe and Si. Int. J. Miner. Metall. Mater., 2021, 28(4): 718.

[15]

Cao P, Qian M, StJohn DH. Effect of iron on grain refinement of high-purity Mg-Al alloys. Scripta Mater., 2004, 51(2): 125.

[16]

Du J, Wang MH, Li WF. Effects of Fe addition and addition sequence on carbon inoculation of Mg-3%Al alloy. J. Alloys Compd., 2010, 502(1): 74.

[17]

StJohn DH, Qian M, Easton MA, Cao P, Hildebrand Z. Grain refinement of magnesium alloys. Metall. Mater. Trans. A, 2005, 36(7): 1669.

[18]

Pan YC, Liu XF, Yang H. Role of C and Fe in grain refinement of an AZ63B magnesium alloy by Al-C master alloy. J. Mater. Sci. Technol., 2005, 21(6): 822.

[19]

Liao HB, Mo LL, Zhou X, Zhao B, Du J. Grain refinement and improvement of mechanical properties of AZ31 magnesium alloy inoculated by in situ oxidation process. J. Mater. Res. Technol., 2021, 12, 807.

[20]

Zhang MX, Kelly PM, Qian M, Taylor JA. Crystallography of grain refinement in Mg-Al based alloys. Acta Mater., 2005, 53(11): 3261.

[21]

Zhang MX, Kelly PM. Edge-to-edge matching model for predicting orientation relationships and habit planes-The improvements. Scripta Mater., 2005, 52(10): 963.

[22]

Lee YC, Dahle AK, StJohn DH. The role of solute in grain refinement of magnesium. Metall. Mater. Trans. A, 2000, 31(11): 2895.

[23]

StJohn DH, Cao P, Qian M, Easton MA. A brief history of the development of grain refinement technology for cast magnesium alloys. Magnesium Technology 2013, 2013, Cham, Springer, 3.

AI Summary AI Mindmap
PDF

117

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/