Microstructure evolution and corrosion resistance of AZ31 magnesium alloy tube by stagger spinning

Fanlin Zheng , Hongsheng Chen , Yuanqi Zhang , Wenxian Wang , Huihui Nie

International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (7) : 1361 -1372.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (7) : 1361 -1372. DOI: 10.1007/s12613-021-2396-x
Article

Microstructure evolution and corrosion resistance of AZ31 magnesium alloy tube by stagger spinning

Author information +
History +
PDF

Abstract

This study fabricates an AZ31 magnesium alloy tube by spinning technology-power stagger forward spinning. The microstructure evolution of the tube is investigated by combining electron backscatter diffraction and transmission electron microscopy analysis, and the corrosion resistance is measured by an electrochemical corrosion test. Results show that the grains are obviously more uniform and finer along the wall thickness’s direction of the AZ31 alloy tube after the third spinning pass. The number of twins ascends first and then descends, while the varying trend of low-angle grain boundaries (LAGBs) is opposite to that of the twins as the spinning pass increases. With the increase of the total spinning deformation, the deformation texture initially increases and the c-axis of the {0001} crystal plane gradually rotates to the axial direction of the tube; the deformation texture then decreases and the orientation of grains becomes more random. The main mechanism of grain refinement is dynamic recrystallization by the twin-induced way and bowing out of the nucleation at grain boundaries during the first and second pass. However, the dominant mechanism of the refined grain is the high-temperature dynamic recovery in the third pass, and the microstructure mainly consists of substructured grains. After the spinning deformation, the corrosion resistance of the AZ31 alloy tube decreases due to the combined effect of twins and high density-dislocations.

Keywords

AZ31 magnesium alloy / power stagger forward spinning / microstructure evolution / corrosion resistance

Cite this article

Download citation ▾
Fanlin Zheng, Hongsheng Chen, Yuanqi Zhang, Wenxian Wang, Huihui Nie. Microstructure evolution and corrosion resistance of AZ31 magnesium alloy tube by stagger spinning. International Journal of Minerals, Metallurgy, and Materials, 2022, 29(7): 1361-1372 DOI:10.1007/s12613-021-2396-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Song JF, She J, Chen DL, Pan FS. Latest research advances on magnesium and magnesium alloys worldwide. J. Magnes. Alloys, 2020, 8(1): 1.

[2]

L. Yang, T. Wang, and C. Liu, et al., Microstructures and mechanical properties of AZ31 magnesium alloys fabricated via vacuum hot-press sintering, J. Alloys Compd., 870(2021), art. No. 159473.

[3]

J.Y. Shen, L.Y. Zhang, and L.X. Hu, et al., Towards strength-ductility synergy through a novel technique of multi-pass lowered-temperature drawing in AZ31 magnesium alloys, J. Alloys Compd., 873(2021), art. No. 159604.

[4]

Wang YP, Li F, Wang Y, Li XW, Fang WW. Effect of extrusion ratio on the microstructure and texture evolution of AZ31 magnesium alloy by the staggered extrusion (SE). J. Magnes. Alloys, 2020, 8, 1304.

[5]

Hoseini-Athar MM, Mahmudi R, Babu RP, Hedstrm P. Tailoring the texture of an extruded Mg sheet through constrained groove pressing for achieving low mechanical anisotropy and high yield strength. Scripta Mater., 2020, 186, 253.

[6]

Xia QX, Xiao GF, Long H, Cheng XQ, Yang BJ. A study of manufacturing tubes with nano/ultrafine grain structure by stagger spinning. Mater. Des., 2014, 59, 516.

[7]

Nie XW, Xie S, Xu H, Du Y. Simulation of the ultrafine microstructure evolution during annealing of AZ31 processed by ECAP. Physica B, 2010, 405(8): 1969.

[8]

Svoboda HG, Vago F. Superplastic behavior of AZ31 processed by ECAP. Procedia Mater. Sci., 2015, 9, 590.

[9]

Suh J, Victoria-Hernández J, Letzig D, Golle R, Volk W. Effect of processing route on texture and cold formability of AZ31 Mg alloy sheets processed by ECAP. Mater. Sci. Eng. A, 2016, 669, 159.

[10]

Hosaka T, Yoshihara S, Amanina I, MacDonald BJ. Influence of grain refinement and residual stress on corrosion behavior of AZ31 magnesium alloy processed by ECAP in RPMI-1640 medium. Procedia Eng., 2017, 184, 432.

[11]

Schwarz F, Eilers C, Krüger L. Mechanical properties of an AM20 magnesium alloy processed by accumulative rollbonding. Mater. Charact., 2015, 105, 144.

[12]

Sabetghadam-Isfahani A, Zalaghi H, Hashempour S, Fattahi M, Amirkhanlou S, Fattahi Y. Fabrication and properties of ZrO2/AZ31 nanocomposite fillers of gas tungsten arc welding by accumulative roll bonding. Arch. Civ. Mech. Eng., 2016, 16(3): 397.

[13]

Motevalli PD, Eghbali B. Microstructure and mechanical properties of Tri-metal Al/Ti/Mg laminated composite processed by accumulative roll bonding. Mater. Sci. Eng. A, 2015, 628, 135.

[14]

Stráská J, Janeček M, Gubicza J, Krajńák T, Yoon EY, Kim HS. Evolution of microstructure and hardness in AZ31 alloy processed by high pressure torsion. Mater. Sci. Eng. A, 2015, 625, 98.

[15]

Torbati-Sarraf SA, Sabbaghianrad S, Figueiredo RB, Langdon TG. Orientation imaging microscopy and microhardness in a ZK60 magnesium alloy processed by high-pressure torsion. J. Alloys Compd., 2017, 712, 185.

[16]

Lee HJ, Han JK, Janakiraman S, et al. Significance of grain refinement on microstructure and mechanical properties of an Al−3% Mg alloy processed by high-pressure torsion. J. Alloys Compd., 2016, 686, 998.

[17]

Jiang MG, Yan H, Chen RS. Twinning, recrystallization and texture development during multi-directional impact forging in an AZ61 Mg alloy. J. Alloys Compd., 2015, 650, 399.

[18]

Wang BZ, Liu CM, Gao YH, Jiang SN, Chen ZY, Luo Z. Microstructure evolution and mechanical properties of Mg-Gd-Y-Ag-Zr alloy fabricated by multidirectional forging and ageing treatment. Mater. Sci. Eng. A, 2017, 702, 22.

[19]

Kalpakjian S, Rajagopal S. Spinning of tubes: A review. J. Appl. Metalwork., 1982, 2(3): 211.

[20]

Xia QX, Xiao GF, Long H, Cheng XQ, Sheng XF. A review of process advancement of novel metal spinning. Int. J. Mach. Tools Manuf., 2014, 85, 100.

[21]

Xue KM, Lu Y, Zhao XM. A study of the rational matching relationships amongst technical parameters in stagger spinning. J. Mater. Process. Technol., 1997, 69(1–3): 167

[22]

Hu ZL, Yuan SJ, Wang XS, Liu G, Liu HJ. Microstructure and mechanical properties of Al-Cu-Mg alloy tube fabricated by friction stir welding and tube spinning. Scripta Mater., 2012, 66(7): 427.

[23]

Mohebbi MS, Akbarzadeh A. Experimental study and FEM analysis of redundant strains in flow forming of tubes. J. Mater. Process. Technol., 2010, 210(2): 389.

[24]

Lei ZN, Gao PF, Wang XX, Zhan M, Li HW. Analysis of anisotropy mechanism in the mechanical property of titanium alloy tube formed through hot flow forming. J. Mater. Sci. Technol., 2021, 86, 77.

[25]

Shan DB, Yang GP, Xu WC. Deformation history and the resultant microstructure and texture in backward tube spinning of Ti−6Al−2Zr−1Mo−1V. J. Mater. Process. Technol., 2009, 209(17): 5713.

[26]

Wang XX, Gao PF, Zhan M, Yang K, Dong YD, Li YK. Development of microstructural inhomogeneity in multipass flow forming of TA15 alloy cylindrical parts. Chin. J. Aeronaut., 2020, 33(7): 2088.

[27]

X.Z. Jin, W.C. Xu, G.J. Yang, D.B. Shan, and B. Guo, Microstructure evolution and strengthening mechanisms of Mg−6Gd−4Y−0.5Zn−0.5Zr alloy during hot spinning and aging treatment, Mater. Sci. Eng. A, 827(2021), art. No. 142035.

[28]

Cao Z, Wang FH, Wan Q, Zhang ZY, Jin L, Dong J. Microstructure and mechanical properties of AZ80 magnesium alloy tube fabricated by hot flow forming. Mater. Des., 2015, 67, 64.

[29]

Yuan S, Xia QX, Long JC, Xiao GF, Cheng XQ. Study of the microstructures and mechanical properties of ZK61 magnesium alloy cylindrical parts with inner ribs formed by hot power spinning. Int. J. Adv. Manuf. Technol., 2020, 111(3–4): 851.

[30]

Zhang YL, Wang FH, Dong J, Jin L, Liu CH, Ding WJ. Grain refinement and orientation of AZ31B magnesium alloy in hot flow forming under different thickness reductions. J. Mater. Sci. Technol., 2018, 34(7): 1091.

[31]

Hamu GB, Eliezer D, Wagner L. The relation between severe plastic deformation microstructure and corrosion behavior of AZ31 magnesium alloy. J. Alloys Compd., 2009, 468(1–2): 222.

[32]

Xiao L, Liu L, Chen DL, Esmaeili S, Zhou Y. Resistance spot weld fatigue behavior and dislocation substructures in two different heats of AZ31 magnesium alloy. Mater. Sci. Eng. A, 2011, 529, 81.

[33]

Xu Y, Chen C, Zhang XX, Dai HH, Jia JB, Bai ZH. Dynamic recrystallization kinetics and microstructure evolution of an AZ91D magnesium alloy during hot compression. Mater. Charact., 2018, 145, 39.

[34]

Jia JB, Xu Y, Yang Y, Chen C, Liu WC, Hu LX, Luo JT. Microstructure evolution of an AZ91D magnesium alloy subjected to intense plastic straining. J. Alloys Compd., 2017, 721, 347.

[35]

Yan ZF, Wang DH, He XL, Wang WX, Zhang HX, Dong P, Li CH, Li YL, Zhou J, Liu Z, Sun LY. Deformation behaviors and cyclic strength assessment of AZ31B magnesium alloy based on steady ratcheting effect. Mater. Sci. Eng. A, 2018, 723, 212.

[36]

Wen BK, Wang FH, Jin L, Dong J. Fatigue damage development in extruded Mg−3Al-Zn magnesium alloy. Mater. Sci. Eng. A, 2016, 667, 171.

[37]

Yan CK, Feng AH, Qu SJ, Cao GJ, Sun JL, Shen J, Chen DL. Dynamic recrystallization of titanium: Effect of pre-activated twinning at cryogenic temperature. Acta Mater., 2018, 154, 311.

[38]

K. Zhang, Z.T. Shao, and J. Jiang, Effects of twin-twin interactions and deformation bands on the nucleation of recrystallization in AZ31 magnesium alloy, Mater. Des., 194(2020), art. No. 108936.

[39]

Zhu SQ, Ringer SP. On the role of twinning and stacking faults on the crystal plasticity and grain refinement in magnesium alloys. Acta Mater., 2018, 144, 365.

[40]

M. Duan, L. Luo, and Y. Liu, Microstructural evolution of AZ31 Mg alloy with surface mechanical attrition treatment: Grain and texture gradient, J. Alloys Compd., 823(2020), art. No. 153691.

[41]

Guo LL, Fujita F. Influence of rolling parameters on dynamically recrystallized microstructures in AZ31 magnesium alloy sheets. J. Magnes. Alloys, 2015, 3(2): 95.

[42]

Galiyev A, Kaibyshev R, Gottstein G. Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60. Acta Mater., 2001, 49(7): 1199.

[43]

Kuhlmann-Wilsdorf D. High-strain dislocation patterning, texture formation and shear banding of wavy glide materials in the LEDS theory. Scripta Mater., 1997, 36(2): 173.

[44]

Zhang HJ, Zhang DF, Ma CH, Guo SF. Improving mechanical properties and corrosion resistance of Mg−6Zn-Mn magnesium alloy by rapid solidification. Mater. Lett., 2013, 92, 45.

[45]

Jiang B, Xiang Q, Atrens A, Song JF, Pan FS. Influence of crystallographic texture and grain size on the corrosion behaviour of as-extruded Mg alloy AZ31 sheets. Corros. Sci., 2017, 126, 374.

[46]

Argade GR, Panigrahi SK, Mishra RS. Effects of grain size on the corrosion resistance of wrought magnesium alloys containing neodymium. Corros. Sci., 2012, 58, 145.

[47]

Aung NN, Zhou W. Effect of grain size and twins on corrosion behaviour of AZ31B magnesium alloy. Corros. Sci., 2010, 52(2): 589.

[48]

Andrei M, Eliezer A, Bonora PL, Gutman EM. DC and AC polarisation study on magnesium alloys Influence of the mechanical deformation. Mater. Corros., 2002, 53(7): 455.

[49]

Lu LW, Liu TM, Chen J, Wang ZC. Microstructure and corrosion behavior of AZ31 alloys prepared by dual directional extrusion. Mater. Des., 2012, 36, 687.

[50]

Niu HY, Deng KK, Nie KB, Cao FF, Zhang XC, Li WG. Microstructure, mechanical properties and corrosion properties of Mg−4Zn-−xNi alloys for degradable fracturing ball applications. J. Alloys Compd., 2019, 787, 1290.

[51]

J.H. Peng, Z. Zhang, C. Long, H.H. Chen, Y. Wu, J.A. Huang, W. Zhou, and Y.C. Wu, Effect of crystal orientation and $\{10\bar{1}2\}$ twins on the corrosion behaviour of AZ31 magnesium alloy, J. Alloys Compd., 827(2020), art. No. 154096.

[52]

H.Y. Niu, K.K. Deng, K.B. Nie, C.J. Wang, W. Liang, and Y.C. Wu, Degradation behavior of Mg−4Zn−2Ni alloy with high strength and high degradation rate, Mater. Chem. Phys., 249(2020), art. No. 123131.

[53]

Seong JW, Kim WJ. Development of biodegradable Mg-Ca alloy sheets with enhanced strength and corrosion properties through the refinement and uniform dispersion of the Mg2Ca phase by high-ratio differential speed rolling. Acta Biomater., 2015, 11, 531.

[54]

Zhang CL, Zhang F, Song L, Zeng RC, Li SQ, Han EH. Corrosion resistance of a superhydrophobic surface on micro-arc oxidation coated Mg-Li-Ca alloy. J. Alloys Compd., 2017, 728, 815.

[55]

N. Fakhar and M. Sabbaghian, A good combination of ductility, strength, and corrosion resistance of fine-grained ZK60 magnesium alloy produced by repeated upsetting process for biodegradable applications, J. Alloys Compd., 862(2021), art. No. 158334.

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/