Premature failure induced by non-equilibrium grain-boundary tantalum segregation in air-plasma sprayed ZrO2−YO1.5−TaO2.5 thermal barrier coatings

Yao Yao , Di Wu , Xiaofeng Zhao , Fan Yang

International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (12) : 2189 -2200.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (12) : 2189 -2200. DOI: 10.1007/s12613-021-2394-z
Article

Premature failure induced by non-equilibrium grain-boundary tantalum segregation in air-plasma sprayed ZrO2−YO1.5−TaO2.5 thermal barrier coatings

Author information +
History +
PDF

Abstract

ZrO2−YO1.5−TaO2.5 (ZYTO) is a promising top-coat material for thermal barrier coatings (TBCs). The bulk properties of ZYTO have been reported by several studies, but its performances as TBCs are less-well understood. In this work, ZYTO TBCs were prepared by air plasma spraying (APS) and their thermal cycling performances were investigated at 1150°C. Despite of the good bulk properties, APS ZYTO TBCs present an extremely short thermal fatigue life. This is attributed to the non-equilibrium grain-boundary segregation of TaO2.5 induced by limited solubility and rapid quenching during APS process, resulting in a tetragonal (t) to cubic (c) and metastable-tetragonal (tm) phase transformation in ZYTO TBCs. The volume shrinkage (∼0.74vol%) of phase transformation leads to many cracks at the c/tm phase boundaries after deposition. On the other hand, the formation of cubic phase with massive grain-boundary Ta segregation induces a large intergranular embrittlement and a weak bonding strength (∼5.3 MPa), resulting in the premature failure of the ZYTO TBCs.

Keywords

thermal barrier coatings / air plasma spray / tantalum segregation / phase transformation

Cite this article

Download citation ▾
Yao Yao, Di Wu, Xiaofeng Zhao, Fan Yang. Premature failure induced by non-equilibrium grain-boundary tantalum segregation in air-plasma sprayed ZrO2−YO1.5−TaO2.5 thermal barrier coatings. International Journal of Minerals, Metallurgy, and Materials, 2022, 29(12): 2189-2200 DOI:10.1007/s12613-021-2394-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Clarke DR, Levi CG. Materials design for the next generation thermal barrier coatings. Annu. Rev. Mater. Res., 2003, 33(1): 383.

[2]

Clarke DR, Oechsner M, Padture NP. Thermal-barrier coatings for more efficient gas-turbine engines. MRS Bull., 2012, 37(10): 891.

[3]

Padture NP, Gell M, Jordan EH. Thermal barrier coatings for gas-turbine engine applications. Science, 2002, 296(5566): 280.

[4]

Evans AG, Clarke DR, Levi CG. The influence of oxides on the performance of advanced gas turbines. J. Eur. Ceram. Soc., 2008, 28(7): 1405.

[5]

Mercer C, Williams JR, Clarke DR, Evans AG. On a ferroelastic mechanism governing the toughness of metastable tetragonal-prime (t′) yttria-stabilized zirconia. Proc. R. Soc. A., 2007, 463(2081): 1393.

[6]

Zhou L, Zhang YF, Yi P, Wen Y, Dong CF, Meng LM, Yang SF. Effects of BN content on the mechanical properties of nanocrystalline 3Y-TZP/Al2O3/BN dental ceramics. Int. J. Miner. Metall. Mater., 2021, 28(11): 1854.

[7]

Jithesh K, Arivarasu M. Comparative studies on the hot corrosion behavior of air plasma spray and high velocity oxygen fuel coated Co-based L605 superalloys in a gas turbine environment. Int. J. Miner. Metall. Mater., 2020, 27(5): 649.

[8]

Wang PP, Chen GQ, Li WJ, Li H, Ju BY, Hussain M, Yang WS, Wu GH. Microstructural evolution and thermal conductivity of diamond/Al composites during thermal cycling. Int. J. Miner. Metall. Mater., 2021, 28(11): 1821.

[9]

Chevalier J, Gremillard L, Virkar AV, Clarke DR. The tetragonal-monoclinic transformation in zirconia: Lessons learned and future trends. J. Am. Ceram. Soc., 2009, 92(9): 1901.

[10]

Vaßen R, Jarligo MO, Steinke T, Mack DE, Stöver D. Overview on advanced thermal barrier coatings. Surf. Coat. Technol., 2010, 205(4): 938.

[11]

Cao XQ, Vassen R, Jungen W, Schwartz S, Tietz F, Stöver D. Thermal stability of lanthanum zirconate plasma-sprayed coating. J. Am. Ceram. Soc., 2001, 84(9): 2086.

[12]

Wang CM, Guo L, Zhang Y, Zhao XX, Ye FX. Enhanced thermal expansion and fracture toughness of Sc2O3-doped Gd2Zr2O7 ceramics. Ceram. Int., 2015, 41(9): 10730.

[13]

Ren K, Wang QK, Shao G, Zhao XF, Wang YG. Multicomponent high-entropy zirconates with comprehensive properties for advanced thermal barrier coating. Scripta Mater., 2020, 178, 382.

[14]

Kim DJ, Tien TY. Phase stability and physical properties of cubic and tetragonal ZrO2 in the system ZrO2−Y2O3−Ta2O5. J. Am. Ceram. Soc., 1991, 74(12): 3061.

[15]

Macauley CA, Fernandez AN, Levi CG. Phase equilibria in the ZrO2−YO1.5−TaO2.5 system at 1500°C. J. Eur. Ceram. Soc., 2017, 37(15): 4888.

[16]

Macauley CA, Fernandez AN, Van Sluytman JS, Levi CG. Phase equilibria in the ZrO2−YO1.5−TaO2.5 system at 1250°C. J. Eur. Ceram. Soc., 2018, 38(13): 4523.

[17]

Li P, Chen IW, Penner-Hahn JE. Effect of dopants on zirconia stabilization-an X-ray absorption study: III, charge-compensating dopants. J. Am. Ceram. Soc., 1994, 77(5): 1289.

[18]

Shian S, Sarin P, Gurak M, Baram M, Kriven WM, Clarke DR. The tetragonal-monoclinic, ferroelastic transformation in yttrium tantalate and effect of zirconia alloying. Acta Mater., 2014, 69, 196.

[19]

Pitek FM, Levi CG. Opportunities for TBCs in the ZrO2−YO1.5−TaO2.5 system. Surf. Coat. Technol., 2007, 201(12): 6044.

[20]

Shen Y, Leckie RM, Levi CG, Clarke DR. Low thermal conductivity without oxygen vacancies in equimolar YO1.5 + TaO2.5- and YbO1.5 + TaO2.5-stabilized tetragonal zirconia ceramics. Acta Mater., 2010, 58(13): 4424.

[21]

Limarga AM, Shian S, Leckie RM, Levi CG, Clarke DR. Thermal conductivity of single- and multi-phase compositions in the ZrO2−Y2O3−Ta2O5 system. J. Eur. Ceram. Soc., 2014, 34(12): 3085.

[22]

Van Sluytman JS, Krämer S, Tolpygo VK, Levi CG. Microstructure evolution of ZrO2−YbTaO4 thermal barrier coatings. Acta Mater., 2015, 96, 133.

[23]

Raghavan S, Wang H, Dinwiddie RB, Porter WD, Vaßen R, Stöver D, Mayo MJ. Ta2O5/Nb2O5 and Y2O3 Codoped zirconias for thermal barrier coatings. J. Am. Ceram. Soc., 2004, 87(3): 431.

[24]

Guo FW, Xing C, Wang GW, Zou ZH, Wang X, Zhang Q, Zhao XF, Xiao P. Hollow ceramic microspheres prepared by combining electro-spraying with non-solvent induced phase separation method: A promising feedstock for thermal barrier coatings. Mater. Des., 2018, 139, 343.

[25]

Traeger F, Vaßen R, Rauwald KH, Stöver D. Thermal cycling setup for testing thermal barrier coatings. Adv. Eng. Mater., 2003, 5(6): 429.

[26]

Park KY, Yang BI, Jeon SH, Park HM, Jung YG. Variation of thermal barrier coating lifetime characteristics with thermal durability evaluation methods. J. Therm. Spray Technol., 2018, 27(8): 1436.

[27]

Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res., 1992, 7(6): 1564.

[28]

Wang YF, Xiao P. The phase stability and toughening effect of 3Y-TZP dispersed in the lanthanum zirconate ceramics. Mater. Sci. Eng. A, 2014, 604, 34.

[29]

Anstis GR, Chantikul P, Lawn BR, Marshall DB. A critical evaluation of indentation techniques for measuring fracture toughness: I, Direct crack measurements. J. Am. Ceram. Soc., 1981, 64(9): 533.

[30]

Xu T. Interfacial segregation and embrittlement. Reference Module in Materials Science and Materials Engineering, 2016, Amsterdam, Elsevier

[31]

Ren XR, Pan W. Mechanical properties of high-temperature-degraded yttria-stabilized zirconia. Acta Mater., 2014, 69, 397.

[32]

Mao WG, Wan J, Dai CY, Ding J, Zhang Y, Zhou YC, Lu C. Evaluation of microhardness, fracture toughness and residual stress in a thermal barrier coating system: A modified Vickers indentation technique. Surf. Coat. Technol., 2012, 206(21): 4455.

[33]

Friedrich C, Gadow R, Schirmer T. Lanthanum hexaaluminate—a new material for atmospheric plasma spraying of advanced thermal barrier coatings. J. Therm. Spray Technol., 2001, 10(4): 592.

[34]

Gadow R, Lischka M. Lanthanum hexaaluminate—novel thermal barrier coatings for gas turbine applications—materials and process development. Surf. Coat. Technol., 2002, 151–152, 392.

[35]

Zhang SL, Li CX, Li CJ. Dominant factors influencing the electrochemical performance of plasma-sprayed LSGM electrolyte. ECS Trans., 2015, 68(1): 433.

[36]

Krogstad JA, Krämer S, Lipkin DM, Johnson CA, Mitchell DRG, Cairney JM, Levi CG. Phase stability of t’-zirconia-based thermal barrier coatings: Mechanistic insights. J. Am. Ceram. Soc., 2011, 94(Suppl. 1): s168.

[37]

Bhattacharya AK, Shklover V, Steurer W, Witz G, Bossmann HP, Fabrichnaya O. Ta2O5−Y2O3−ZrO2 system: Experimental study and preliminary thermodynamic description. J. Eur. Ceram. Soc., 2011, 31(3): 249.

[38]

Zheng CG, West AR. Compound and solid-solution formation, phase equilibria and electrical properties in the ceramic system ZrO2−La2O3-−Ta2O5. J. Mater. Chem., 1991, 1(2): 163.

[39]

Anthony TR. Solute segregation in vacancy gradients generated by sintering and temperature changes. Acta Metall., 1969, 17(5): 603.

[40]

Kameda J, Bloomer TE. Kinetics of grain-boundary segregation and desegregation of sulfur and phosphorus during post-irradiation annealing. Acta Mater., 1999, 47(3): 893.

[41]

Xu TD. The critical time and critical cooling rate of non-equilibrium grain-boundary segregations. J. Mater. Sci. Lett., 1988, 7(3): 241.

[42]

Fauchais P. Understanding plasma spraying. J. Phys. D: Appl. Phys., 2004, 37(9): R86.

[43]

Hayashi H, Saitou T, Maruyama N, Inaba H, Kawamura K, Mori M. Thermal expansion coefficient of yttria stabilized zirconia for various yttria contents. Solid State Ionics, 2005, 176(5–6): 613.

[44]

Loganathan A, Gandhi AS. Effect of high-temperature aging on the fracture toughness of ytterbia-stabilized t’ zirconia. Scripta Mater., 2012, 67(3): 285.

[45]

Portinha A, Teixeira V, Carneiro J, Beghi MG, Bottani CE, Franco N, Vassen R, Stoever D, Sequeira AD. Residual stresses and elastic modulus of thermal barrier coatings graded in porosity. Surf. Coat. Technol., 2004, 188–189, 120.

[46]

Lughi V, Clarke DR. Transformation of electron-beam physical vapor-deposited 8 wt% yttria-stabilized zirconia thermal barrier coatings. J. Am. Ceram. Soc., 2005, 88(9): 2552.

[47]

Karaoglanli AC, Dikici H, Kucuk Y. Effects of heat treatment on adhesion strength of thermal barrier coating systems. Eng. Fail. Anal., 2013, 32, 16.

AI Summary AI Mindmap
PDF

326

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/