Icosahedral quasicrystal structure of the Mg40Zn55Nd5 phase and its thermodynamic stability

Shuai Zhang , Qianqian Li , Hongcan Chen , Qun Luo , Qian Li

International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (8) : 1543 -1550.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (8) : 1543 -1550. DOI: 10.1007/s12613-021-2391-2
Article

Icosahedral quasicrystal structure of the Mg40Zn55Nd5 phase and its thermodynamic stability

Author information +
History +
PDF

Abstract

The quasicrystal phase is beneficial to increasing the strength of magnesium alloys. However, its complicated structure and unclear phase relations impede the design of alloys with good mechanical properties. In this paper, the Mg40Zn55Nd5 icosahedral quasicrystal (I-phase) structure is discovered in an as-cast Mg-58Zn-4Nd alloy by atomic resolution high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). A cloud-like morphology is observed with Mg41.6Zn55.0Nd3.4 composition. The selected area electronic diffraction (SAED) analysis shows that the icosahedral quasicrystal structure has 5-fold, 4-fold, 3-fold, and 2-fold symmetry zone axes. The thermodynamic stability of the icosahedral quasicrystal is investigated by differential scanning calorimetry (DSC) in the annealed alloys. When annealed above 300°C, the Mg40Zn55Nd5 quasicrystal is found to decompose into a stable ternary phase Mg35Zn60Nd5, a binary phase MgZn, and α-Mg, suggesting that the quasicrystal is a metastable phase in the Mg-Zn-Nd system.

Keywords

icosahedral quasicrystal / crystal structure / thermodynamic stability / Mg-Zn-Nd alloys

Cite this article

Download citation ▾
Shuai Zhang, Qianqian Li, Hongcan Chen, Qun Luo, Qian Li. Icosahedral quasicrystal structure of the Mg40Zn55Nd5 phase and its thermodynamic stability. International Journal of Minerals, Metallurgy, and Materials, 2022, 29(8): 1543-1550 DOI:10.1007/s12613-021-2391-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ma YZ, Yang CL, Liu YJ, Yuan FS, Liang SS, Li HX, Zhang JS. Microstructure, mechanical, and corrosion properties of extruded low-alloyed Mg-xZn-0.2Ca alloys. J. Miner. Metall. Mater., 2019, 26(10): 1274

[2]

Ali NA, Ismail M. Advanced hydrogen storage of the Mg-Na-Al system: A review. J. Magnes. Alloys, 2021, 9(4): 1111.

[3]

Li Q, Lin X, Luo Q, Chen YA, Wang JF, Jiang B, Pan FS. Kinetics of the hydrogen absorption and desorption processes of hydrogen storage alloys: A review. Int. J. Miner. Metall. Mater., 2022, 29(1): 32.

[4]

Li Y, Jiang Y, Liu B, Luo Q, Hu B, Li Q. Understanding grain refining and anti Si-poisoning effect in Al-10Si/Al-5Nb-B system. J. Mater. Sci. Technol., 2021, 65, 190.

[5]

Su JL, Teng J, Xu ZL, Li Y. Biodegradable magnesium-matrix composites: A review. Int. J. Miner. Metall. Mater., 2020, 27(6): 724.

[6]

H. Elkholy, H. Othman, I. Hager, M. Ibrahim, and D. de Ligny, Thermal and optical properties of binary magnesium tellurite glasses and their link to the glass structure, J. Alloys Compd., 823(2020), art. No. 153781.

[7]

Song JF, She J, Chen DL, Pan FS. Latest research advances on magnesium and magnesium alloys worldwide. J. Magnes. Alloys, 2020, 8(1): 1.

[8]

Y.C. Zhou, Q. Luo, B. Jiang, Q. Li, and F.S. Pan, Strength-ductility synergy in Mg98.3Y1.3Ni0.4 alloy processed by high temperature homogenization and rolling, Scripta Mater., 208(2022), art. No. 114345.

[9]

Tang WQ, Lee JY, Wang HM, Steglich D, Li DY, Peng YH, Wu PD. Unloading behaviors of the rare-earth magnesium alloy ZE10 sheet. J. Magnes. Alloys, 2021, 9(3): 927.

[10]

Xie TC, Shi H, Wang HB, Luo Q, Li Q, Chou KC. Thermodynamic prediction of thermal diffusivity and thermal conductivity in Mg-Zn-La/Ce system. J. Mater. Sci. Technol., 2022, 97, 147.

[11]

Gao M, Ma Z, Etim IP, Tan LL, Yang K. Microstructure, mechanical and corrosion properties of Mg-Zn-Nd alloy with different accumulative area reduction after room-temperature drawing. Rare Met., 2021, 40(4): 897.

[12]

Si HJ, Jiang YX, Tang Y, Zhang LJ. Stable and metastable phase equilibria in binary Mg-Gd system: A comprehensive understanding aided by CALPHAD modeling. J. Magnes. Alloys, 2019, 7(3): 501.

[13]

Guo YL, Liu B, Xie W, Luo Q, Li Q. Anti-phase boundary energy of β series precipitates in Mg-Y-Nd system. Scripta Mater., 2021, 193, 127.

[14]

Li L, Li DJ, Zeng XQ, Luo AA, Hu B, Sachdev AK, Gu LL, Ding WJ. Microstructural evolution of Mg-Al-Re alloy reinforced with alumina fibers. J. Magnes. Alloys, 2020, 8(3): 565.

[15]

Zengin H, Turen Y. Effect of Y addition on microstructure and corrosion behavior of extruded Mg-Zn-Nd-Zr alloy. J. Magnes. Alloys, 2020, 8(3): 640.

[16]

Li Q, Peng XD, Pan FS. Magnesium-based materials for energy conversion and storage. J. Magnes. Alloys, 2021, 9(6): 2223.

[17]

Zhang Z, Zhang JH, Wang J, Li ZH, Xie JS, Liu SJ, Guan K, Wu RZ. Toward the development of Mg alloys with simultaneously improved strength and ductility by refining grain size via the deformation process. Int. J. Miner. Metall. Mater., 2021, 28(1): 30.

[18]

Wang YB, Jia SS, Wei MG, Peng LM, Wu YJ, Liu XT. Research progress on solidification structure of alloys by synchrotron X-ray radiography: A review. J. Magnes. Alloys, 2020, 8(2): 396.

[19]

Li Q, Lu YF, Luo Q, Yang XH, Yang Y, Tan J, Dong ZH, Dang J, Li JB, Chen Y, Jiang B, Sun SH, Pan FS. Thermodynamics and kinetics of hydriding and dehydriding reactions in Mg-based hydrogen storage materials. J. Magnes. Alloys, 2021, 9(6): 1922.

[20]

Pang YP, Sun DK, Gu QF, Chou KC, Wang XL, Li Q. Comprehensive determination of kinetic parameters in solidstate phase transitions: An extended jonhson-mehl-avrami-kolomogorov model with analytical solutions. Cryst. Growth Des., 2016, 16(4): 2404.

[21]

Samadpour F, Faraji G, Siahsarani A. Processing of AM60 magnesium alloy by hydrostatic cyclic expansion extrusion at elevated temperature as a new severe plastic deformation method. Int. J. Miner. Metall. Mater., 2020, 27(5): 669.

[22]

Gao X, Nie JF. Structure and thermal stability of primary intermetallic particles in an Mg-Zn casting alloy. Scripta Mater., 2007, 57(7): 655.

[23]

Luo Q, Guo YL, Liu B, Feng YJ, Zhang JY, Li Q, Chou KC. Thermodynamics and kinetics of phase transformation in rare earth-magnesium alloys: A critical review. J. Mater. Sci. Technol., 2020, 44, 171.

[24]

Wu AR, Gu Y, Xia CQ. Study of microstructure and properties of Mg-RE(Ce Nd Y)-Zn-Zr alloys. Hot Working Technol., 2004, 33(12): 21

[25]

Zhang Y, Zeng XQ, Liu LF, Lu C, Zhou HT, Li Q, Zhu YP. Effects of yttrium on microstructure and mechanical properties of hot-extruded Mg-Zn-Y-Zr alloys. Mater. Sci. Eng. A, 2004, 373(1–2): 320.

[26]

Zhang XP, Yuan GY, Liu Y, Ding WJ. Effects of alloying elements on the microstructure and mechanical properties of Mg-Zn-Gd alloys. Special Cast. Nonferrous Alloys, 2008, 28(11): 882

[27]

Jung YG, Yang W, Hyun JI, Kim SK, Lim H, Kim DH. Effects of I- and W-phases under identical conditions on microstructure and mechanical properties of as-cast Mg-Zn-Y alloys at room and elevated temperatures. Met. Mater. Int., 2021, 27(12): 5154.

[28]

Luo WB, Xue ZY, Mao WM. Effect of heat treatment on the microstructure and micromechanical properties of the rapidly solidified Mg61.7Zn34Gd4.3 alloy containing icosahedral phase. Int. J. Miner. Metall. Mater., 2019, 26(7): 869.

[29]

Bae DH, Kim SH, Kim DH, Kim WT. Deformation behavior of Mg-Zn-Y alloys reinforced by icosahedral quasicrystalline particles. Acta Mater., 2002, 50(9): 2343.

[30]

Zhu SM, Abbott TB, Gibson MA, Nie JF, Easton MA. The influence of minor Mn additions on creep resistance of die-cast Mg-Al-RE alloys. Mater. Sci. Eng. A, 2017, 682, 535.

[31]

Shechtman D, Blech I, Gratias D, Cahn JW. Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett., 1984, 53(20): 1951.

[32]

Langsdorf A, Ritter F, Assmus W. Determination of the primary solidification area of the icosahedral phase in the ternary phase diagram of Zn-Mg-Y. Philos. Mag. Lett., 1997, 75(6): 381.

[33]

Abe E, Sato TJ, Tsai AP. Structure and phase transformation of the Zn-Mg-rare-earth quasicrystals. Mater. Sci. Eng. A, 2000, 294–296, 29.

[34]

Yi S, Park ES, Ok JB, Kim WT, Kim DH. (Icosahedral phase+α-Mg) two phase microstructures in the Mg-Zn-Y ternary system. Mater. Sci. Eng. A, 2001, 300(1–2): 312.

[35]

Zhang JS, Yan J, Liang W, Xu CX, Zhou CL. Icosahedral quasicrystal phase in Mg-Zn-Nd ternary system. Mater. Lett., 2008, 62(30): 4489.

[36]

Yang CP. Effect of Solidification Rate and Heattreatment on Microstructure Evolution of Mg-Zn-Nd Quasicrystal Alloy, 2015, Jinan, University of Jinan, 40 [Dissertation]

[37]

Yang L, Hou H, Zhao YH, Yang XM, Hao XJ. Effects of heat treatment on microstructure and properties of Mg-45Zn-1.5Nd alloy. Trans. Mater. Heat Treat., 2014, 35(8): 53

[38]

Huang ML, Yang JY, Li HX, Ren YP, Ding H, Hao SM. Research on the local equilibria in the Mg-rich coener of the Mg-Zn-Nd system at 300°C. J. Mater. Metal., 2008, 7(2): 126

[39]

Mostafa A, Medraj M. Experimental investigation of the Mg-Nd-Zn isothermal section at 300°C. Metals, 2015, 5(1): 84.

[40]

Zhang C, Luo AA, Peng LM, Stone DS, Chang YA. Thermodynamic modeling and experimental investigation of the magnesium-neodymium-zinc alloys. Intermetallics, 2011, 19(11): 1720.

[41]

Zhang JS, Yan J, Liang W, Du EL, Xu CX. Microstructures of Mg-Zn-Nd alloy including small quasicrystalline grains. J. Non Cryst. Solids, 2009, 355(14–15): 836.

[42]

Niikura A, Tsai AP, Inoue A, Masumoto T. New class of amorphous and icosahedral phases in Zn-Mg-rare-earth metal alloys. Jpn. J. Appl. Phys., 1994, 33, L1538.

[43]

Ge XJ. Study on the Formation and Stability of Quasicrystal Phase in Mg-Zn-Nd Alloys, 2018, Jinan, University of Jinan, 39 [Dissertation]

[44]

Gröbner J, Kozlov A, Fang XY, Geng J, Nie JF, Schmid-Fetzer R. Phase equilibria and transformations in ternary Mg-rich Mg-Y-Zn alloys. Acta Mater., 2012, 60(17): 5948.

AI Summary AI Mindmap
PDF

116

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/