Semi-empirical estimation for enhancing negative thermal expansion in PbTiO3-based perovskites

Tao Yang , Longlong Fan , Yilin Wang , Kun Lin , Jun Chen , Xianran Xing

International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (4) : 783 -786.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (4) : 783 -786. DOI: 10.1007/s12613-021-2390-3
Brief Communication

Semi-empirical estimation for enhancing negative thermal expansion in PbTiO3-based perovskites

Author information +
History +
PDF

Abstract

Generally, most materials expand when heated and contract when cooled, whereas negative thermal expansion (NTE) materials are very rare. As a typical NTE material, PbTiO3 and related compounds have drawn particular interest in recent years. The discovery of an enhanced NTE system in PbTiO3 is beneficial to deepen our understanding of its mechanism and regulate its properties. At present, the method of discriminating an enhanced NTE material based on PbTiO3 is not universal. Here, we propose a semi-empirical method through evaluating the average lattice distortion in related systems to estimate the relative coefficient of thermal expansion conveniently. The rationality of the method was verified by the analysis of the 0.6PbTiO3−0.4Bi(Ga xFe1−x)O3 system. So far, all PbTiO3-based compounds with enhanced NTE conform well to this method. This method provides the possibility to find more enhanced NTE PbTiO3-based materials.

Keywords

enhanced negative thermal expansion / crystal structure / lead titanate / spontaneous polarization

Cite this article

Download citation ▾
Tao Yang, Longlong Fan, Yilin Wang, Kun Lin, Jun Chen, Xianran Xing. Semi-empirical estimation for enhancing negative thermal expansion in PbTiO3-based perovskites. International Journal of Minerals, Metallurgy, and Materials, 2022, 29(4): 783-786 DOI:10.1007/s12613-021-2390-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Shirane G, Hoshino S, Suzuki K. X-ray study of the phase transition in lead titanate. Phys. Rev., 1950, 80(6): 1105.

[2]

Chen J, Hu L, Deng J, Xing X. Negative thermal expansion in functional materials: Controllable thermal expansion by chemical modifications. Chem. Soc. Rev., 2015, 44(11): 3522.

[3]

Chen J, Xing XR, Yu RB, Liu GR. Thermal expansion properties of lanthanum-substituted lead titanate ceramics. J. Am. Ceram. Soc., 2005, 88(5): 1356.

[4]

Chandra A, Pandey D, Mathews MD, Tyagi AK. Large negative thermal expansion and phase transition in (Pb1−xCax)TiO3 (0.30 ≤ x ≤ 0.45) ceramics. J. Mater. Res., 2005, 20(2): 350.

[5]

Xing XR, Deng JX, Zhu ZQ, Liu GR. Solid solution Ba1−xPbxTiO3 and its thermal expansion. J. Alloys Compd., 2003, 353(1–2): 1.

[6]

Chen J, Xing XR, Deng JX, Liu GR. Thermal expansions of ceramics in the system Pb1−x(La1/2K1/2)xTiO3. J. Alloys Compd., 2004, 372(1–2): 259.

[7]

Hu PH, Cao ZM, Chen J, Deng JX, Sun C, Yu RB, Xing XR. Structure and negative thermal expansion of Pb1−xBixTiO3. Mater. Lett., 2008, 62(30): 4585.

[8]

P.H. Hu, J. Chen, X.Y. Sun, J.X. Deng, X. Chen, R.B. Yu, L.J. Qiao, and X.R. Xing, Zero thermal expansion in (1−x)PbTiO3xBi(Mg, Ti)1/2O3 piezoceramics, J. Mater. Chem., 19(2009), No. 11, art. No. 1648.

[9]

Hu PH, Chen J, Deng JX, Xing XR. Thermal expansion, ferroelectric and magnetic properties in (1−x)PbTiO3xBi(Ni1/2Ti1/2)O3. J. Am. Chem. Soc., 2010, 132(6): 1925.

[10]

Chen J, Xing XR, Sun C, Hu PH, Yu RB, Wang XW, Li LH. Zero thermal expansion in PbTiO3-based perovskites. J. Am. Chem. Soc., 2008, 130(4): 1144.

[11]

Hu PH, Chen J, Sun C, Deng JX, Xing XR. B-site dopant effect on the thermal expansion in the (1−x)PbTiO3xBiMeO3 Solid solution (Me = Fe, In, Sc). J. Am. Ceram. Soc., 2011, 94(10): 3600.

[12]

J. Chen, X.R. Xing, R.B. Yu, and G.R. Liu, Structure and enhancement of negative thermal expansion in the PbTiO3−Cd−TiO3 system, Appl. Phys. Lett., 87(2005), No. 23, art. No. 231915.

[13]

J. Chen, X.R. Xing, G.R. Liu, J.H. Li, and Y.T. Liu, Structure and negative thermal expansion in the PbTiO3−BiFeO3 system, Appl. Phys. Lett., 89(2006), No. 10, art. No. 101914.

[14]

Yang T, Wang YL, Fan LL, Wang N, Lin K, Chen J, Xing XR. Strong covalent bonding for enhanced negative thermal expansion in (1−x)PbTiO3xBiGaO3. J. Phys. Chem. C, 2020, 124(37): 20445.

[15]

J.S.O. Evans, Negative thermal expansion materials, J. Chem. Soc., Dalton Trans., 1999, No. 19, p. 3317.

[16]

Sleight AW. Compounds that contract on heating. Inorg. Chem., 1998, 37(12): 2854.

[17]

Takenaka K. Progress of research in negative thermal expansion materials: Paradigm shift in the control of thermal expansion. Front. Chem., 2018, 6, 267.

[18]

J. Chen, F.F. Wang, Q.Z. Huang, L. Hu, X.P. Song, J.X. Deng, R.B. Yu, and X.R. Xing, Effectively control negative thermal expansion of single-phase ferroelectrics of PbTiO3−(Bi,La)FeO3 over a giant range, Sci. Rep., 3(2013), art. No. 2458.

[19]

Cheng JR, Li N, Cross LE. Structural and dielectric properties of Ga-modified BiFeO3−PbTiO3 crystalline solutions. J. Appl. Phys., 2003, 94(8): 5153.

[20]

Fan LL, Li Q, Zhang LX, Shi NK, Liu H, Ren Y, Chen J, Xing XR. Negative thermal expansion and the role of hybridization in perovskite-type PbTiO3−Bi(Cu0.5Ti0.5)O3. Inorg. Chem. Front., 2020, 7(5): 1190.

AI Summary AI Mindmap
PDF

153

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/