Efficiency enhancement of Cs0.1(CH3NH3)0.9PbI3 perovskite solar cell by surface passivation using iso-butyl ammonium iodide

Wakul Bumrungsan , Kritsada Hongsith , Vasan Yarangsi , Pisith Kumnorkeaw , Sukrit Sucharitakul , Surachet Phaduangdhitidhada , Supab Choopun

International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (11) : 1963 -1970.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (11) : 1963 -1970. DOI: 10.1007/s12613-021-2382-3
Article

Efficiency enhancement of Cs0.1(CH3NH3)0.9PbI3 perovskite solar cell by surface passivation using iso-butyl ammonium iodide

Author information +
History +
PDF

Abstract

Efficiency enhancement of Cs0.1(CH3NH3)0.9PbI3 solar cell devices was performed by using iso-butyl ammonium iodide (IBA) passivated on Cs0.1(CH3NH3)0.9PbI3 films. The n−i−p structure of perovskite solar cell devices was fabricated with the structure of FTO/SnO2/Cs0.1(CH3NH3)0.9PbI3 (FTO, i.e., fluorine doped tin oxide) and IBA/Spiro-OMeTAD/Ag. The effect of different weights of IBA passivated on Cs-doped perovskite solar cells (PSCs) was systematically investigated and compared with non-passivated devices. It was found that the 5-mg IBA-passivated devices exhibited a high power conversion efficiency (PCE) of 15.49% higher than 12.64% of non-IBA-passivated devices. The improvement of photovoltaic parameters of the 5-mg IBA-passivated device can be clearly observed compared to the Cs-doped device. The better performance of the IBA-passivated device can be confirmed by the reduction of PbI2 phase in the crystal structure, lower charge recombination rate, lower charge transfer resistance, and improved contact angle of perovskite films. Therefore, IBA passivation on Cs0.1(CH3NH)0.9PbI3 is a promising technique to improve the efficiency of Cs-doped perovskite solar cells.

Keywords

perovskite solar cell / power conversion efficiency / surface passivation / cesium methylammonium lead iodide / iso-butyl ammonium iodide

Cite this article

Download citation ▾
Wakul Bumrungsan, Kritsada Hongsith, Vasan Yarangsi, Pisith Kumnorkeaw, Sukrit Sucharitakul, Surachet Phaduangdhitidhada, Supab Choopun. Efficiency enhancement of Cs0.1(CH3NH3)0.9PbI3 perovskite solar cell by surface passivation using iso-butyl ammonium iodide. International Journal of Minerals, Metallurgy, and Materials, 2022, 29(11): 1963-1970 DOI:10.1007/s12613-021-2382-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kim JY, Lee JW, Jung HS, Shin H, Park NG. High-efficiency perovskite solar cells. Chem. Rev., 2020, 120(15): 7867.

[2]

R. Wang, M. Mujahid, Y. Duan, Z.K. Wang, J.J. Xue, and Y. Yang, A review of perovskites solar cell stability, Adv. Funct. Mater., 29(2019), No. 47, art. No. 1808843.

[3]

Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc., 2009, 131(17): 6050.

[4]

National Renewable Energy Laboratory, Best Research-Cell Efficiency Chart [2021-02]. http://www.nrel.gov/pv/cell-efficiency.html

[5]

Wang D, Wright M, Elumalai NK, Uddin A. Stability of perovskite solar cells. Sol. Energy Mater. Sol. Cells, 2016, 147, 255.

[6]

Niu GD, Guo XD, Wang LD. Review of recent progress in chemical stability of perovskite solar cells. J. Mater. Chem. A, 2015, 3(17): 8970.

[7]

Peng J, Wu YL, Ye W, Jacobs DA, Shen HP, Fu X, Wan YM, Duong T, Wu ND, Barugkin C, Nguyen HT, Zhong DY, Li JT, Lu T, Liu Y, Lockrey MN, Weber KJ, Catchpole KR, White TP. Interface passivation using ultrathin polymer-fullerene films for high-efficiency perovskite solar cells with negligible hysteresis. Energy Environ. Sci., 2017, 10(8): 1792.

[8]

Z.P. Wang, Q.Q. Lin, F.P. Chmiel, N. Sakai, L.M. Herz, and H.J. Snaith, Efficient ambient-air-stable solar cells with 2D–3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites, Nat. Energy, 2(2017), No. 9, art. No. 17135.

[9]

Wojciechowski K, Leijtens T, Siprova S, Schlueter C, Hörantner MT, Wang JTW, Li CZ, Jen AKY, Lee TL, Snaith HJ. C60 as an efficient n-type compact layer in perovskite solar cells. J. Phys. Chem. Lett., 2015, 6(12): 2399.

[10]

Matteocci F, Cinà L, Lamanna E, Cacovich S, Divitini G, Midgley PA, Ducati C, Di Carlo A. Encapsulation for long-term stability enhancement of perovskite solar cells. Nano Energy, 2016, 30, 162.

[11]

Z.Y. Fu, M. Xu, Y.S. Sheng, Z.B. Yan, J. Meng, C.H. Tong, D. Li, Z.N. Wan, Y. Ming, A.Y. Mei, Y. Hu, Y.G. Rong, and H.W. Han, Encapsulation of printable mesoscopic perovskite solar cells enables high temperature and long-term outdoor stability, Adv. Funct. Mater., 29(2019), No. 16, art. No. 1809129.

[12]

H. Zhang, H. Wang, W. Chen, and A.K.Y. Jen, CuGaO2: A promising inorganic hole-transporting material for highly efficient and stable perovskite solar cells, Adv. Mater., 29(2017), No. 8, art. No. 1604984.

[13]

Tirado J, Vásquez-Montoya M, Roldán-Carmona C, Ralaiarisoa M, Koch N, Nazeeruddin MK, Jaramillo F. Air-stable n−i−p planar perovskite solar cells using nickel oxide nanocrystals as sole hole-transporting material. ACS Appl. Energy Mater., 2019, 2(7): 4890.

[14]

You JB, Meng L, Song TB, Guo TF, Yang Y, Chang WH, Hong ZR, Chen HJ, Zhou HP, Chen Q, Liu YS, De Marco N, Yang Y. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat. Nanotechnol., 2016, 11(1): 75.

[15]

L. Chu and L.M. Ding, Self-assembled monolayers in perovskite solar cells, J. Semicond., 42(2021), No. 9, art. No. 090202.

[16]

Jiang Q, Zhao Y, Zhang XW, Yang XL, Chen Y, Chu ZM, Ye QF, Li XX, Yin ZG, You JB. Surface passivation of perovskite film for efficient solar cells. Nat. Photonics, 2019, 13(7): 460.

[17]

Xia JM, Liang C, Mei SL, Gu H, He BC, Zhang ZP, Liu TH, Wang KY, Wang SS, Chen S, Cai YQ, Xing GC. Deep surface passivation for efficient and hydrophobic perovskite solar cells. J. Mater. Chem. A, 2021, 9(5): 2919.

[18]

Chu L. Pseudohalide anion engineering for highly efficient and stable perovskite solar cells. Matter, 2021, 4(6): 1762.

[19]

Yangi L, Li YW, Pei YX, Wang JQ, Lin H, Li X. A novel 2D perovskite as surface “patches” for efficient flexible perovskite solar cells. J. Mater. Chem. A, 2020, 8(16): 7808.

[20]

Y.F. Wang, H. Xu, F. Wang, D.T. Liu, H. Chen, H.L. Zheng, L. Ji, P. Zhang, T. Zhang, Z.D. Chen, J. Wu, L. Chen, and S.B. Li, Unveiling the guest effect of N-butylammonium iodide towards efficient and stable 2D–3D perovskite solar cells through sequential deposition process, Chem. Eng. J., 391(2020), art. No. 123589.

[21]

J. Horn, M. Scholz, K. Oum, T. Lenzer, and D. Schlettwein, Influence of phenylethylammonium iodide as additive in the formamidinium tin iodide perovskite on interfacial characteristics and charge carrier dynamics, APL Mater., 7(2019), No. 3, art. No. 031112.

[22]

Zhang Y, Jang S, Hwang IW, Jung YK, Lee BR, Kim JH, Kim KH, Park SH. Bilateral interface engineering for efficient and stable perovskite solar cells using phenylethylam-monium iodide. ACS Appl. Mater. Interfaces, 2020, 12(22): 24827.

[23]

Liu YH, Akin S, Hinderhofer A, Eickemeyer FT, Zhu HW, Seo JY, Zhang JH, Schreiber F, Zhang H, Zakeeruddin SM, Hagfeldt A, Dar MI, Grätzel M. Stabilization of highly efficient and stable phase-pure FAPbI3 perovskite solar cells by molecularly tailored 2D-overlayers. Angew. Chem. Int. Ed., 2020, 59(36): 15688.

[24]

H.Y. Zheng, G.Z. Liu, L.Z. Zhu, J.J. Ye, X.H. Zhang, A. Alsaedi, T. Hayat, X. Pan, and S.Y. Dai, The effect of hydrophobicity of ammonium salts on stability of quasi-2D perovskite materials in moist condition, Adv. Energy Mater., 8(2018), No. 21, art. No. 1800051.

[25]

Zheng YT, Niu TT, Ran XQ, Qiu J, Li BX, Xia YD, Chen YH, Huang W. Unique characteristics of 2D Ruddlesden-Popper (2DRP) perovskite for future photovoltaic application. J. Mater. Chem. A, 2019, 7(23): 13860.

[26]

H.W. Zhu, Y.H. Liu, F.T. Eickemeyer, L.F. Pan, D. Ren, M.A. Ruiz-Preciado, B. Carlsen, B.W. Yang, X.F. Dong, Z.W. Wang, H.L. Liu, S.R. Wang, S.M. Zakeeruddin, A. Hagfeldt, M.I. Dar, X.G. Li, and M. Grätzel, Tailored amphiphilic molecular mitigators for stable perovskite solar cells with 23.5% efficiency, Adv. Mater., 32(2020), No. 12, art. No. 1907757.

[27]

Y. Cho, A.M. Soufiani, J.S. Yun, J. Kim, D.S. Lee, J. Seidel, X.F. Deng, M.A. Green, S.J. Huang, and A.W.Y. Ho-Baillie, Mixed 3D-2D passivation treatment for mixed-cation lead mixed-halide perovskite solar cells for higher efficiency and better stability, Adv. Energy Mater., 8(2018), No. 20, art. No. 1703392.

[28]

V. Yarangsi, K. Hongsith, S. Sucharitakul, A. Ngamjarurojana, A. Tuantranont, P. Kumnorkaew, Y.X. Zhao, S. Phadungdhitidhada, and S. Choopun, Interface modification of SnO2 layer using p-n junction double layer for efficiency enhancement of perovskite solar cell, J. Phys. D: Appl. Phys., 53(2020), No. 50, art. No. 505103.

[29]

Hsiao KC, Jao MH, Li BT, Lin TH, Liao SHC, Wu MC, Su WF. Enhancing efficiency and stability of hot casting p-i-n perovskite solar cell via dipolar ion passivation. ACS Appl. Energy Mater., 2019, 2(7): 4821.

[30]

Habisreutinger SN, Noel NK, Snaith HJ. Hysteresis index: A figure without merit for quantifying hysteresis in perovskite solar cells. ACS Energy Lett., 2018, 3(10): 2472.

[31]

Li YP, Li HJ, Tian LW, Wang QY, Wu FK, Zhang F, Du L, Huang YL. Vertical phase segregation suppression for efficient FA-based quasi-2D perovskite solar cells via HCl additive. J. Mater. Sci.: Mater. Electron., 2020, 31(15): 12301

[32]

X.Q. Zhang, G. Wu, S.D. Yang, W.F. Fu, Z.Q. Zhang, C. Chen, W.Q. Liu, J.L. Yan, W.T. Yang, and H.Z. Chen, Vertically oriented 2D layered perovskite solar cells with enhanced efficiency and good stability, Small, 13(2017), No. 33, art. No. 1700611.

[33]

Choi H, Jeong J, Kim HB, Kim S, Walker B, Kim GH, Kim JY. Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells. Nano Energy, 2014, 7, 80.

[34]

Adnan M, Lee JK. Highly efficient planar heterojunction perovskite solar cells with sequentially dip-coated deposited perovskite layers from a non-halide aqueous lead precursor. RSC Adv., 2020, 10(9): 5454.

[35]

F. Huang, P. Siffalovic, B. Li, S.X. Yang, L.X. Zhang, P. Nadazdy, G.Z. Cao, and J.J. Tian, Controlled crystallinity and morphologies of 2D Ruddlesden-Popper perovskite films grown without anti-solvent for solar cells, Chem. Eng. J., 394(2020), art. No. 124959.

[36]

Hwang I, Baek M, Yong K. Core/shell structured TiO2/CdS electrode to enhance the light stability of perovskite solar cells. ACS Appl. Mater. Interfaces, 2015, 7(50): 27863.

[37]

Dai GT, Zhao L, Li J, Wan L, Hu F, Xu ZX, Dong BH, Lu HB, Wang SM, Yu JG. A novel photoanode architecture of dye-sensitized solar cells based on TiO2 hollow sphere/nanorod array double-layer film. J. Colloid Interface Sci., 2012, 365(1): 46.

[38]

Park JT, Roh DK, Chi WS, Patel R, Kim JH. Fabrication of double layer photoelectrodes using hierarchical TiO2 nanospheres for dye-sensitized solar cells. J. Ind. Eng. Chem., 2012, 18(1): 449.

AI Summary AI Mindmap
PDF

94

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/