Reagent types and action mechanisms in ilmenite flotation: A review
Jiaozhong Cai , Jiushuai Deng , Liang Wang , Mingzhen Hu , Hongxiang Xu , Xiaoan Hou , Bozeng Wu , Shimei Li
International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (9) : 1656 -1669.
Reagent types and action mechanisms in ilmenite flotation: A review
Ilmenite is an essential mineral for the extraction of titanium. Conventional physical separation methods have difficulty recovering fine ilmenite, and dressing plants have begun applying flotation to recover ilmenite. The interaction of reagent groups with Ti and Fe sites on the ilmenite surface dramatically influences the ilmenite flotation. However, the investigation on Fe sites has received more attention because the activity of Ti is lower than that of Fe. For the activators on ilmenite flotation, most are metal ions but typically lead ions. The metal ions of activators promote ilmenite flotation by increasing the active sites on the ilmenite surface. Combined reagents have a better selective separation of ilmenite than single reagents due to their synergistic effect. Combining the lead ion (Pb2+) and the benzyl hydroxamic acid (BHA) into a Pb—BHA complex has a marked effect on ilmenite flotation, which puts forward a new idea of developing combined reagents for ilmenite flotation. This review considers reagent types and action mechanisms in ilmenite flotation. On the basis of the analysis of previous research, a brief future outlook of reagent types and action mechanisms in ilmenite flotation is also proposed in this study.
ilmenite / flotation / reagent / action mechanism / combined reagents
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
J.H. Zhai, P. Chen, W. Sun, W. Chen, and S. Wan, A review of mineral processing of ilmenite by flotation, Miner. Eng., 157(2020), art. No. 106558. |
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
Y.L. Qian, Z. Wang, and J. Cao, New depression mechanism of polymeric depressant on titanaugite in ilmenite flotation, Sep. Purif. Technol., 264(2021), art. No. 118468. |
| [18] |
|
| [19] |
|
| [20] |
P. Chen, X.L. Lu, X.J. Chai, H. Mulenga, J.D. Gao, H. Liu, Q.B. Meng, W. Sun, and Y.D. Gao, Influence of Fe-BHA complexes on the flotation behavior of ilmenite, Colloids Surf. A Physicochem. Eng. Aspects, 612(2021), art. No. 125964. |
| [21] |
|
| [22] |
L.Q. Deng, L.D. Zhu, L.Y. Fei, X. Ma, F. Deng, R. Zuo, Z.Q. Huang, L.Q. Li, Y.X. Xie, Z.H. Xiao, and R.K. Liu, Froth flotation of ilmenite by using the dendritic surfactant 2-decanoylamino-pentanedioic acid, Miner. Eng., 165(2021), art. No. 106861. |
| [23] |
|
| [24] |
|
| [25] |
M.Y. Li, J. Liu, Y.M. Hu, X.P. Gao, Q.D. Yuan, and F.G. Zhao, Investigation of the specularite/chlorite separation using chitosan as a novel depressant by direct flotation, Carbohydr. Polym., 240(2020), art. No. 116334. |
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
S.Y. Yang, Y.L. Xu, C. Liu, D.A.D. Soraya, C. Li, and H.Q. Li, Investigations on the synergistic effect of combined NaOl/SPA collector in ilmenite flotation, Colloids Surf. A, 628(2021), art. No. 127267. |
| [55] |
|
| [56] |
|
| [57] |
D.W. Yu and Z.Y. Zhong, Non-depressing active flotation of primary fine-ilmenite, Express Infor. Min. Ind., 2000, No. 14, p. 16. |
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
M. Irannajad, O.S. Nuri, and A. Mehdilo, Surface dissolution-assisted mineral flotation: A review, J. Environ. Chem. Eng., 7(2019), No. 3, art. No. art.No103050. |
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
|
| [80] |
|
| [81] |
J.Z. Wang, W.Z. Yin, Z. Li, and J.Z. Qu, Influence and mechanism of lead and ferric ions on the flotation of scheelite and quartz, Conserv. Util. Miner. Resour., 2017, No. 2, p. 35. |
| [82] |
G.C. Gong, J. Liu, and Y.X. Han, Effect of metal ions on floatation behaviors of fine cassiterite, Multipurp. Util. Miner. Resour., 2016, No. 4, p. 43. |
| [83] |
|
| [84] |
|
| [85] |
|
| [86] |
|
| [87] |
|
| [88] |
|
| [89] |
|
| [90] |
|
| [91] |
J.Z. Cai, J.S. Deng, H.Y. Yang, L.L. Tong, D.D. Wu, S.M. Wen, Z.L. Liu, and Y. Zhang, A novel activation for ilmenite using potassium permanganate and its effect on flotation response, Colloids Surf. A, 604(2020), art. No. 125323. |
| [92] |
|
| [93] |
L.X. Li, C. Zhang, Z.T. Yuan, Z.C. Liu, and C.F. Li, Selectivity of benzyl hydroxamic acid in the flotation of ilmenite, Front. Chem., 7(2019), art. No. 886. |
| [94] |
|
| [95] |
|
| [96] |
|
| [97] |
|
| [98] |
|
| [99] |
|
| [100] |
Q. Chen, R.M. Kasomo, H.Q. Li, et al., Froth flotation of rutile—An overview, Miner. Eng., 163(2021), art. No. 106797. |
| [101] |
|
| [102] |
Z.J. Xie, Commercial test on flotation of ilmenite by new type of XT collecttor, Multipurp. Util. Miner. Resour., 2004, No. 4, p. 22. |
| [103] |
|
| [104] |
Z.Y. Zhong and D.W. Yu, Trial research of flotation for crude titaniferous concentrate, Hebei Metall., 2003, No. 1, p. 18. |
| [105] |
|
| [106] |
H. He and D.W. Yu, Test research of separating coarse ilmenite with ZY collector, Met. Mine, 2002, No. 6, p. 23. |
| [107] |
X.Y. Dai, Experimental research of applying F968 collector in concentrating fine Panzhihua ilmenite, Met. Mine, 2000, No. 11, p. 40. |
| [108] |
J.G. Zhu, S.M. Chen, X.H. Yao, Q.H. Deng, and S.H. Wang, Flotation of micro-fine ilmenite using new type collector-moh, Nonferrous Met. Miner. Process., 2007, No. 6, p. 42. |
| [109] |
J.G. Zhu, Study and application of collector for ilmenite in China, Min. Metall. Eng., 2006, p. 78. |
| [110] |
J.G. Zhu, Y.S. Zhu, S.H. Wang and S.M. Chen, Making up new ilmenite collector by the maximum synergisms, Nonferrous Met. Miner. Process., 2002, No. 4, p. 39. |
| [111] |
|
| [112] |
|
| [113] |
|
| [114] |
|
| [115] |
|
| [116] |
Y.H. Hu, H.S. Han, M.J. Tian, W. Sun, J.J. Wang, Z. Wei, and R.L. Wang, The application of metal-coordinated complexes in the flotation of oxide minerals and fundamental research of the adsorption mechanism, Conserv. Util. Miner. Resour., 2018, No. 1, p. 42. |
| [117] |
|
| [118] |
H.S. Han, Y. Xiao, Y.H. Hu, W. Sun, A.V. Nguyen, H.H. Tang, X.H. Gui, Y.W. Xing, Z. Wei, and J.J. Wang, Replacing Petrov’s process with atmospheric flotation using Pb—BHA complexes for separating scheelite from fluorite, Miner. Eng., 145(2020), art. No. 106053. |
| [119] |
|
| [120] |
|
| [121] |
|
| [122] |
|
/
| 〈 |
|
〉 |