Phase equilibrium studies of titanomagnetite and ilmenite smelting slags

Jinfa Liao , Baojun Zhao

International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (12) : 2162 -2171.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (12) : 2162 -2171. DOI: 10.1007/s12613-021-2376-1
Article

Phase equilibrium studies of titanomagnetite and ilmenite smelting slags

Author information +
History +
PDF

Abstract

The phase equilibrium information of slag plays an important role in pyrometallurgical processes to obtain optimum fluxing conditions and operating temperatures. The smelting reduction of titanomagnetite and ilmenite ores in an iron blast furnace (BF) can form Ti(C,N) particles, causing the increased viscosities of slag and hot metal. HIsmelt has been developed in recent years for ironmaking and does not need coke and sinter. The formation of Ti(C,N) in the HIsmelt process is avoided because the oxygen partial pressure in the process is higher than that in the BF. The smelting of TiO2-containing ores in the HIsmelt process results in Al2O3-MgO-SiO2-CaO-TiO2 slag. Phase equilibrium in this slag system has been investigated using equilibration, quenching, and electron probe microanalysis techniques. The experimental results were presented in two pseudo-binary sections, which represent the process of HIsmelt for the treatment of 100% titanomagnetite ore and mixed titanomagnetite+ilmenite ore (mass ratio of 2:1), respectively. The primary phases observed in the composition range investigated include pseudo-brookite M3O5 (MgO·2TiO2-Al2O3·TiO2), spinel (MgO·Al2O3), perovskite CaTiO3, and rutile TiO2. The results show that the liquidus temperatures decrease in the TiO2 and M3O5 primary phase fields and increase in the spinel and CaTiO3 primary phase fields with the increase in CaO concentration. The calculation of solid-phase fractions from the experimental data has been demonstrated. The effect of basicity on the liquidus temperatures of the slag has been discussed. The smelting of titanomagnetite plus ilmenite ores has significant advantages to obtain low-sulfur hot metal and high-TiO2 slag. Experimentally determined liquidus temperatures were compared with the FactSage predictions to evaluate the existing thermodynamic databases.

Keywords

HIsmelt / slag / phase equilibrium / Al2O3-MgO-SiO2-CaO-TiO2 system / FactSage

Cite this article

Download citation ▾
Jinfa Liao, Baojun Zhao. Phase equilibrium studies of titanomagnetite and ilmenite smelting slags. International Journal of Minerals, Metallurgy, and Materials, 2022, 29(12): 2162-2171 DOI:10.1007/s12613-021-2376-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang HT, Zhao W, Chu MS, Feng C, Liu ZG, Tang J. Current status and development trends of innovative blast furnace ironmaking technologies aimed to environmental harmony and operation intellectualization. J. Iron Steel Res. Int., 2017, 24(8): 751.

[2]

Mousa E. Modern blast furnace ironmaking technology: Potentials to meet the demand of high hot metal production and lower energy consumption. Metall. Mater. Eng., 2019, 25(2): 69.

[3]

Diao RS. New understanding about special problems of smelting vanadium bearing titanomagnetite with BF. Iron Steel, 1999, 34(6): 12

[4]

Pang ZD, Jiang YY, Ling JW, XW, Yan ZM. Blast furnace ironmaking process with super high TiO2 in the slag: Density and surface tension of the slag. Int. J. Miner. Metall. Mater., 2022, 29(6): 1170.

[5]

Sun J, Wang S, Chu MS, et al. Titanium distribution between blast furnace slag and iron for blast furnace linings protection. Ironmaking Steelmaking, 2020, 47(5): 545.

[6]

Jiao KX, Zhang JL, Liu ZJ, Kuang SB, Liu YX. Dissection investigation of Ti(C,N) behavior in blast furnace hearth during vanadium titano-magnetite smelting. ISIJ Int., 2017, 57(1): 48.

[7]

Zhang GH, Zhen YL, Chou KC. Influence of TiC on the viscosity of CaO-MgO-Al2O3-SiO2-TiC suspension system. ISIJ Int., 2015, 55(5): 922.

[8]

Wang S, Chen M, Guo YF, Jiang T, Zhao BJ. Reduction and smelting of vanadium titanomagnetite metallized pellets. JOM, 2019, 71(3): 1144.

[9]

Wang S, Chen M, Guo YF, Jiang T, Zhao BJ. Comparison of phase equilibria between FactSage predictions and experimental results in titanium oxide-containing system. Calphad, 2018, 63, 77.

[10]

D. Xie, Y. Mao, and Y. Zhu, Viscosity and flow behaviour of TiO2-containing blast furnace slags under reducing conditions, [in] 7th International Conference on Molten Slags, Fluxes and Salts, Cape Town, 2004, p. 43.

[11]

K.X. Jiao, J.L. Zhang, Z.Y. Wang, C.L. Chen, and Y.X. Liu, Effect of TiO2 and FeO on the viscosity and structure of blast furnace primary slags, Steel Res. Int., 88(2017), No. 5, art. No. 1600296.

[12]

Jiao KX, Zhang JL, Liu ZJ, Chen CL, Liu YX. Analysis of blast furnace hearth sidewall erosion and protective layer formation. ISIJ Int., 2016, 56(11): 1956.

[13]

Liu C, Zhang YZ, Zhao K, Xing HW, Kang Y. Modified biomass fuel instead of coke for iron ore sintering. Ironmaking Steelmaking, 2020, 47(2): 188.

[14]

X. Zhang, Q. Zhong, C. Liu, et al., Partial substitution of anthracite for coke breeze in iron ore sintering, Sci. Rep., 11(2021), art. No. 1540.

[15]

Zhang JL, Zhang GQ, Liu ZJ, Wang ZH, Li KJ, Zhang XB. Production overview and main characteristics of HIsmelt process in Shandong Molong. China Metall., 2018, 28(5): 37

[16]

Ma HB, Jiao KX, Zhang JL, Zong YB, Zhang J, Meng S. Viscosity of CaO-MgO-Al2O3-SiO2-TiO2-FeO slag with varying TiO2 content: The effect of crystallization on viscosity abrupt behavior. Ceram. Int., 2021, 47(12): 17445.

[17]

X.Y. Zhang, K.X. Jiao, J.L. Zhang, and Z.Y. Guo, A review on low carbon emissions projects of steel industry in the world, J. Clean. Prod., 306(2021), art. No. 127259.

[18]

Cao CZ, Meng YJ, Yan FX, Zhang DW, Li X, Zhang FM, et al. Wang T, Chen XB, Guillen DP, et al. Analysis on energy efficiency and optimization of HIsmelt process. Energy Technology 2019. The Minerals, Metals & Materials Series, 2019, Cham, Springer, 3

[19]

Y.L. Li, H.B. Li, H. Wang, et al., Smelting potential of HIsmelt technology for high-phosphorus iron ore and ilmenite, [in] 2011 International Conference on Computer Distributed Control and Intelligent Environmental Monitoring, Changsha, 2011, p. 1283.

[20]

Heikinheimo E, Ryzhonkov D, Paderin S. Iron oxide activity in complex silicate slags. Solid State Ionics, 1981, 3–4, 541.

[21]

Shi CB, Zheng DL, Shin SH, Li J, Cho JW. Effect of TiO2 on the viscosity and structure of low-fluoride slag used for electroslag remelting of Ti-containing steels. Int. J. Miner. Metall. Mater., 2017, 24(1): 18.

[22]

Zhang L, Zhang LN, Wang MY, Li GQ, Sui ZT. Recovery of titanium compounds from molten Ti-bearing blast furnace slag under the dynamic oxidation condition. Miner. Eng., 2007, 20(7): 684.

[23]

Ma J, Fu GQ, Li W, Zhu MY. Influence of TiO2 on the melting property and viscosity of Cr-containing high-Ti melting slag. Int. J. Miner. Metall. Mater., 2020, 27(3): 310.

[24]

Wang Z, Sun HY, Zhu QS. Effects of the continuous cooling process conditions on the crystallization and liberation characteristics of anosovite in Ti-bearing titanomagnetite smelting slag. Int. J. Miner. Metall. Mater., 2019, 26(9): 1120.

[25]

J.F. Liao and B.J. Zhao, Phase equilibria study in the system “Fe2O3”-ZnO-Al2O3-(PbO+CaO+SiO2) in air, Calphad, 74(2021), art. No. 102282.

[26]

Liao JF, Zhao BJ. Experimental studies in phase equilibrium of the system “FeO”-SiO2-MgO-Al2O3-“Cr2O3” at iron saturation. Metall. Mater. Trans. B, 2021, 52(4): 2364.

[27]

Wang X, Ma XD, Su K, Liao CF, Zhao BJ. Fundamental studies for high temperature processing of tungsten leaching residues for alloy formation. Tungsten, 2020, 2(4): 362.

[28]

Wang S, Guo YF, Zheng FQ, et al. Optimization of basicity of high Ti slag for efficient smelting of vanadium titanomagnetite metallized pellets. Metall. Mater. Trans. B, 2020, 51(3): 945.

[29]

Holmes WT, Banning LH, Brown LL. Liquidus Temperatures of Titaniferous Slag (in Three Parts). 1, TiO2-Al2O3-SiO2-CaO-MgO. Report of Investigations, 1968, Bureau of Mines, US Department of the Interior, 7081

[30]

McRae LB, Pothas E, Jochens PR, Howat DD. Physico-chemical properties of titaniferous slags. J. South. Afr. Inst. Min. Metall., 1969, 69(11): 557

[31]

I.P. Ratchev and G.R. Belton, A study of the liquidus temperatures of titano-magnetite smelting type slag, [in] Proceedings of the 5th International Conference on Molten Slag, Fluxes and Salts, Sydney, 1997, p. 387.

[32]

Shi JJ, Sun LF, Zhang B, et al. Experimental determination of the phase diagram of the CaO-SiO2-5 pctMgO-10 pctAl2O3-TiO2 system. Metall. Mater. Trans. B, 2016, 47(1): 425.

[33]

Sun LF, Shi JJ. Effect of Al2O3 addition on the phase equilibria relations of CaO-SiO2-5 wt%MgO-Al2O3-TiO2 system relevant to Ti-bearing blast furnace slag. ISIJ Int., 2019, 59(7): 1184.

[34]

Shi JJ, Chen M, Santoso I, et al. 1250°C liquidus for the CaO-MgO-SiO2-Al2O3-TiO2 system in air. Ceram. Int., 2020, 46(2): 1545.

[35]

Bale CW, Bélisle E, Chartrand P, et al. FactSage thermochemical software and databases, 2010–2016. Calphad, 2016, 54, 35.

[36]

Wang Z, Zhu QS, Sun HY. Phase equilibria in the TiO2-rich part of the TiO2-CaO-SiO2-10 wt pct Al2O3-5 wt pct MgO system at 1773 K. Metall. Mater. Trans. B, 2019, 50(1): 357.

[37]

Handfield G, Charette GG. Viscosity and structure of industrial high TiO2 slags. Can. Metall. Q., 1971, 10(3): 235.

[38]

Li XH, Kou J, Sun TC, Wu SC, Zhao YQ. Effects of calcium compounds on the carbothermic reduction of vanadium titanomagnetite concentrate. Int. J. Miner. Metall. Mater., 2020, 27(3): 301.

[39]

Li XH, Kou J, Sun TC, Wu SC, Zhao YQ. Formation of calcium titanate in the carbothermic reduction of vanadium titanomagnetite concentrate by adding CaCO3. Int. J. Miner. Metall. Mater., 2020, 27(6): 745.

AI Summary AI Mindmap
PDF

123

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/