Tribological properties of high-entropy alloys: A review
Zhuo Cheng , Shuize Wang , Guilin Wu , Junheng Gao , Xusheng Yang , Honghui Wu
International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (3) : 389 -403.
Tribological properties of high-entropy alloys: A review
Tribology, which is the study of friction, wear, and lubrication, largely deals with the service performance of structural materials. For example, newly emerging high-entropy alloys (HEAs), which exhibit excellent hardness, anti-oxidation, anti-softening ability, and other properties, enrich the wear-resistance alloy family. To demonstrate the tribological behavior of HEAs systematically, this review first describes the basic tribological characteristics of single-, dual-, and multi-phase HEAs and HEA composites at room temperature. Then, it summarizes the strategies that improve the tribological property of HEAs. This review also discusses the tribological performance at elevated temperatures and provides a brief perspective on the future development of HEAs for tribological applications.
high-entropy alloys / tribological properties / room temperature / elevated temperature
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
B. Gwalani, S. Dasari, A. Sharma, V. Soni, S. Shukla, A. Jagetia, P. Agrawal, R.S. Mishra, and R. Banerjee, High density of strong yet deformable intermetallic nanorods leads to an excellent room temperature strength—ductility combination in a high entropy alloy, Acta Mater., 219(2021), art. No. 117234. |
| [12] |
S.Q. Yuan, B. Gan, L. Qian, B. Wu, H. Fu, H.H. Wu, C.F. Cheung, and X.S. Yang, Gradient nanotwinned CrCoNi medium-entropy alloy with strength—ductility synergy, Scripta Mater., 203(2021), art. No. 114117. |
| [13] |
R. Feng, Y. Rao, C.H. Liu, X. Xie, D.J. Yu, Y. Chen, M. Ghazisaeidi, T. Ungar, H.M. Wang, K. An, and P.K. Liaw, Enhancing fatigue life by ductile-transformable multicomponent B2 precipitates in a high-entropy alloy, Nat. Commun., 12(2021), art. No. 3588. |
| [14] |
Z.F. Lei, Y. Wu, J.Y. He, X.J. Liu, H. Wang, S.H. Jiang, L. Gu, Q.H. Zhang, B. Gault, D. Raabe, and Z.P. Lu, Snoek-type damping performance in strong and ductile high-entropy alloys, Sci. Adv., 6(2020), No. 25, art. No. eaba7802. |
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
C. Greiner, J. Gagel, and P. Gumbsch, Solids under extreme shear: Friction-mediated subsurface structural transformations, Adv. Mater., 31(2019), No. 16, art. No. 1806705. |
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
C. Nagarjuna, H.J. You, S. Ahn, J.W. Song, K.Y. Jeong, B. Madavali, G. Song, Y.S. Na, J.W. Won, H.S. Kim, and S.J. Hong, Worn surface and subsurface layer structure formation behavior on wear mechanism of CoCrFeMnNi high entropy alloy in different sliding conditions, Appl. Surf. Sci., 549(2021), art. No. 149202. |
| [28] |
|
| [29] |
Y.S. Geng, J. Chen, H. Tan, J. Cheng, J. Yang, and W.M. Liu, Vacuum tribological behaviors of CoCrFeNi high entropy alloy at elevated temperatures, Wear, 456–457(2020), art. No. 203368. |
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
X.B. Guo, I. Baker, F.E. Kennedy, S.P. Ringer, H.S. Chen, W.D. Zhang, Y. Liu, and M. Song, A comparison of the dry sliding wear of single-phase f.c.c. carbon-doped Fe40.4Ni11.3Mn34.8Al7.5Cr6 and CoCrFeMnNi high entropy alloys with 316 stainless steel, Mater. Charact., 170(2020), art. No. 110693. |
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
M. Pole, M. Sadeghilaridjani, J. Shittu, A. Ayyagari, and S. Mukherjee, High temperature wear behavior of refractory high entropy alloys based on 4-5-6 elemental palette, J. Alloys Compd., 843(2020), art. No. 156004. |
| [49] |
A. Poulia, E. Georgatis, A. Lekatou, and A. Karantzalis, Dry-sliding wear response of MoTaWNbV high entropy alloy, Adv. Eng. Mater., 19(2017), No. 2, art. No. 1600535. |
| [50] |
N.B. Hua, W.J. Wang, Q.T. Wang, Y.X. Ye, S.H. Lin, L. Zhang, Q.H. Guo, J. Brechtl, and P.K. Liaw, Mechanical, corrosion, and wear properties of biomedical Ti-Zr-Nb-Ta-Mo high entropy alloys, J. Alloys Compd., 861(2021), art. No. 157997. |
| [51] |
H.L. Huang, Y. Wu, J.Y. He, H. Wang, X.J. Liu, K. An, W. Wu, and Z.P. Lu, Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering, Adv. Mater., 29(2017), No. 30, art. No. 1701678. |
| [52] |
|
| [53] |
C. Lee, G. Kim, Y. Chou, B.L. Musicó, M.C. Gao, K. An, G. Song, Y.C. Chou, V. Keppens, W. Chen, and P.K. Liaw, Temperature dependence of elastic and plastic deformation behavior of a refractory high-entropy alloy, Sci. Adv., 6(2020), No. 37, art. No. eaaz4748. |
| [54] |
M. Sadeghilaridjani, M. Pole, S. Jha, S. Muskeri, N. Ghodki, and S. Mukherjee, Deformation and tribological behavior of ductile refractory high-entropy alloys, Wear, 478–479(2021), art. No. 203916. |
| [55] |
V. Bhardwaj, Q. Zhou, F. Zhang, W.C. Han, Y. Du, K. Hua, and H.F. Wang, Effect of Al addition on the microstructure, mechanical and wear properties of TiZrNbHf refractory high entropy alloys, Tribol. Int., 160(2021), art. No. 107031. |
| [56] |
G.Y. Deng, A.K. Tieu, L.H. Su, P. Wang, L. Wang, X.D. Lan, S.G. Cui, and H.T. Zhu, Investigation into reciprocating dry sliding friction and wear properties of bulk CoCrFeNiMo high entropy alloys fabricated by spark plasma sintering and subsequent cold rolling processes: Role of Mo element concentration, Wear, 460–461(2020), art. No. 203440. |
| [57] |
J.W. Miao, H. Liang, A.J. Zhang, J.Y. He, J.H. Meng, and Y.P. Lu, Tribological behavior of an AlCoCrFeNi2.1 eutectic high entropy alloy sliding against different counterfaces, Tribol. Int., 153(2021), art. No. 106599. |
| [58] |
|
| [59] |
|
| [60] |
Y.S. Geng, H. Tan, L. Wang, A.K. Tieu, J. Chen, J. Cheng, and J. Yang, Nano-coupled heterostructure induced excellent mechanical and tribological properties in AlCoCrFeNi high entropy alloy, Tribol. Int., 154(2021), art. No. 106662. |
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
M.Y. Wu, K. Chen, Z. Xu, and D.Y. Li, Effect of Ti addition on the sliding wear behavior of AlCrFeCoNi high-entropy alloy, Wear, 462–463(2020), art. No. 203493. |
| [68] |
|
| [69] |
Z. Cheng, L. Yang, Z.K. Huang, T. Wan, M.Y. Zhu, and F.Z. Ren, Achieving low wear in a μ-phase reinforced high-entropy alloy and associated subsurface microstructure evolution, Wear, 474–475(2021), art. No. 203755. |
| [70] |
Y. Fu, C. Huang, C.W. Du, J. Li, C.D. Dai, H. Luo, Z.Y. Liu, and X.G. Li, Evolution in microstructure, wear, corrosion, and tribocorrosion behavior of Mo-containing high-entropy alloy coatings fabricated by laser cladding, Corros. Sci., 191(2021), art. No. 109727. |
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
D. Kumar, J. B, D.K. Meena, E.W. Huang, Y.J. Chang, A.C. Yeh, J. Jain, S. Neelakantan, and N.N. Gosvami, Reversal of favorable microstructure under plastic ploughing vs. interfacial shear induced wear in aged Co1.5CrFeNi1.5Ti0.5 high-entropy alloy, Wear, 468–469(2021), art. No. 203595. |
| [79] |
B. Gwalani, T. Torgerson, S. Dasari, A. Jagetia, M.S.K.K.Y. Nartu, S. Gangireddy, M. Pole, T. Wang, T.W. Scharf, and R. Banerjee, Influence of fine-scale B2 precipitation on dynamic compression and wear properties in hypo-eutectic Al0.5CoCrF-eNi high-entropy alloy, J. Alloys Compd., 853(2021), art. No. 157126. |
| [80] |
Y.C. Cai, L.S. Zhu, Y. Cui, M.D. Shan, H.J. Li, Y. Xin, and J. Han, Fracture and wear mechanisms of FeMnCrNiCo + x(TiC) composite high-entropy alloy cladding layers, Appl. Surf. Sci., 543(2021), art. No. 148794. |
| [81] |
P.F. Jiang, C.H. Zhang, S. Zhang, J.B. Zhang, J. Chen, and Y. Liu, Fabrication and wear behavior of TiC reinforced Fe-CoCrAlCu-based high entropy alloy coatings by laser surface alloying, Mater. Chem. Phys., 255(2020), art. No. 123571. |
| [82] |
T. Zhu, H. Wu, R. Zhou, N.Y. Zhang, Y. Yin, L.X. Liang, Y. Liu, J. Li, Q. Shan, Q.X. Li, and W.D. Huang, Microstructures and tribological properties of TiC reinforced FeCoNiCuAl high-entropy alloy at normal and elevated temperature, Metals, 10(2020), No. 3, art. No. 387. |
| [83] |
Z.M. Guo, A.J. Zhang, J.S. Han, and J.H. Meng, Microstructure, mechanical and tribological properties of CoCrFeNiMn high entropy alloy matrix composites with addition of Cr3C2, Tribol. Int., 151(2020), art. No. 106436. |
| [84] |
|
| [85] |
X.Y. Liu, H. Yin, and Y. Xu, Microstructure, mechanical and tribological properties of oxide dispersion strengthened high-entropy alloys, Materials, 10(2017), No. 11, art. No. 1312. |
| [86] |
|
| [87] |
|
| [88] |
|
| [89] |
|
| [90] |
|
| [91] |
Y.H. Wu, H.J. Yang, R.P. Guo, X.J. Wang, X.H. Shi, P.K. Liaw, and J.W. Qiao, Tribological behavior of boronized Al0.1CoCrFeNi high-entropy alloys under dry and lubricated conditions, Wear, 460–461(2020), art. No. 203452. |
| [92] |
|
| [93] |
|
| [94] |
Y.S. Geng, J. Chen, H. Tan, J. Cheng, S.Y. Zhu, and J. Yang, Tribological performances of CoCrFeNiAl high entropy alloy matrix solid-lubricating composites over a wide temperature range, Tribol. Int., 157(2021), art. No. 106912. |
| [95] |
|
| [96] |
|
| [97] |
P.Y. Shi, Y. Yu, N.N. Xiong, M.Z. Liu, Z.H. Qiao, G.W. Yi, Q.Q. Yao, G.P. Zhao, E.Q. Xie, and Q.H. Wang, Microstructure and tribological behavior of a novel atmospheric plasma sprayed AlCoCrFeNi high entropy alloy matrix self-lubricating composite coatings, Tribol. Int., 151(2020), art. No. 106470. |
| [98] |
A.O. Moghaddam, M.N. Samodurova, K. Pashkeev, M. Doubenskaia, A. Sova, and E.A. Trofimov, A novel intermediate temperature self-lubricating CoCrCu1−xFeNix high entropy alloy fabricated by direct laser cladding, Tribol. Int., 156(2021), art. No. 106857. |
| [99] |
|
| [100] |
|
| [101] |
|
| [102] |
|
| [103] |
|
| [104] |
|
| [105] |
|
| [106] |
|
| [107] |
B.B. Xin, A.J. Zhang, J.S. Han, and J.H. Meng, The tribological properties of carbon doped Al0.2Co1.5CrFeNi1.5Ti0.5 high entropy alloys, Wear, 484–485(2021), art. No. 204045. |
| [108] |
|
/
| 〈 |
|
〉 |