Tribological properties of high-entropy alloys: A review

Zhuo Cheng , Shuize Wang , Guilin Wu , Junheng Gao , Xusheng Yang , Honghui Wu

International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (3) : 389 -403.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (3) : 389 -403. DOI: 10.1007/s12613-021-2373-4
Invited Review

Tribological properties of high-entropy alloys: A review

Author information +
History +
PDF

Abstract

Tribology, which is the study of friction, wear, and lubrication, largely deals with the service performance of structural materials. For example, newly emerging high-entropy alloys (HEAs), which exhibit excellent hardness, anti-oxidation, anti-softening ability, and other properties, enrich the wear-resistance alloy family. To demonstrate the tribological behavior of HEAs systematically, this review first describes the basic tribological characteristics of single-, dual-, and multi-phase HEAs and HEA composites at room temperature. Then, it summarizes the strategies that improve the tribological property of HEAs. This review also discusses the tribological performance at elevated temperatures and provides a brief perspective on the future development of HEAs for tribological applications.

Keywords

high-entropy alloys / tribological properties / room temperature / elevated temperature

Cite this article

Download citation ▾
Zhuo Cheng, Shuize Wang, Guilin Wu, Junheng Gao, Xusheng Yang, Honghui Wu. Tribological properties of high-entropy alloys: A review. International Journal of Minerals, Metallurgy, and Materials, 2022, 29(3): 389-403 DOI:10.1007/s12613-021-2373-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Miracle DB, Senkov ON. A critical review of high entropy alloys and related concepts. Acta Mater., 2017, 122, 448.

[2]

Zhang Y, Zuo TT, Tang Z, Gao MC, Dahmen KA, Liaw PK, Lu ZP. Microstructures and properties of high-entropy alloys. Prog. Mater. Sci., 2014, 61, 1.

[3]

Cantor B, Chang ITH, Knight P, Vincent AJB. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A, 2004, 375–377, 213.

[4]

Yeh JW, Chen SK, Lin SJ, Gan JY, Chin TS, Shun TT, Tsau CH, Chang SY. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater., 2004, 6(5): 299.

[5]

Zhang WR, Liaw PK, Zhang Y. Science and technology in high-entropy alloys. Sci. China Mater., 2018, 61(1): 2.

[6]

Li ZM, Pradeep KG, Deng Y, Raabe D, Tasan CC. Metastable high-entropy dual-phase alloys overcome the strength—ductility trade-off. Nature, 2016, 534(7606): 227.

[7]

Yang T, Zhao YL, Tong Y, Jiao ZB, Wei J, Cai JX, Han XD, Chen D, Hu A, Kai JJ, Lu K, Liu Y, Liu CT. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys. Science, 2018, 362(6417): 933.

[8]

Shi PJ, Li RG, Li Y, Wen YB, Zhong YB, Ren WL, Shen Z, Zheng TX, Peng JC, Liang X, Hu PF, Min N, Zhang Y, Ren Y, Liaw PK, Raabe D, Wang YD. Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys. Science, 2021, 373(6557): 912.

[9]

Pan QS, Zhang LX, Feng R, Lu QH, An K, Chuang AC, Poplawsky JD, Liaw PK, Lu L. Gradient cell-structured high-entropy alloy with exceptional strength and ductility. Science, 2021, 374(6570): 984.

[10]

Shi PJ, Zhong YB, Li Y, Ren WL, Zheng TX, Shen Z, Yang B, Peng JC, Hu PF, Zhang Y, Liaw PK, Zhu YT. Multistage work hardening assisted by multi-type twinning in ultrafine-grained heterostructural eutectic high-entropy alloys. Mater. Today, 2020, 41, 62.

[11]

B. Gwalani, S. Dasari, A. Sharma, V. Soni, S. Shukla, A. Jagetia, P. Agrawal, R.S. Mishra, and R. Banerjee, High density of strong yet deformable intermetallic nanorods leads to an excellent room temperature strength—ductility combination in a high entropy alloy, Acta Mater., 219(2021), art. No. 117234.

[12]

S.Q. Yuan, B. Gan, L. Qian, B. Wu, H. Fu, H.H. Wu, C.F. Cheung, and X.S. Yang, Gradient nanotwinned CrCoNi medium-entropy alloy with strength—ductility synergy, Scripta Mater., 203(2021), art. No. 114117.

[13]

R. Feng, Y. Rao, C.H. Liu, X. Xie, D.J. Yu, Y. Chen, M. Ghazisaeidi, T. Ungar, H.M. Wang, K. An, and P.K. Liaw, Enhancing fatigue life by ductile-transformable multicomponent B2 precipitates in a high-entropy alloy, Nat. Commun., 12(2021), art. No. 3588.

[14]

Z.F. Lei, Y. Wu, J.Y. He, X.J. Liu, H. Wang, S.H. Jiang, L. Gu, Q.H. Zhang, B. Gault, D. Raabe, and Z.P. Lu, Snoek-type damping performance in strong and ductile high-entropy alloys, Sci. Adv., 6(2020), No. 25, art. No. eaba7802.

[15]

Luo H, Li ZM, Mingers AM, Raabe D. Corrosion behavior of an equiatomic CoCrFeMnNi high-entropy alloy compared with 304 stainless steel in sulfuric acid solution. Corros. Sci., 2018, 134, 131.

[16]

Zuo TT, Yang X, Liaw PK, Zhang Y. Influence of Bridgman solidification on microstructures and magnetic behaviors of a non-equiatomic FeCoNiAlSi high-entropy alloy. Intermetallics, 2015, 67, 171.

[17]

Kumar NAPK, Li C, Leonard KJ, Bei H, Zinkle SJ. Microstructural stability and mechanical behavior of FeNiMnCr high entropy alloy under ion irradiation. Acta Mater., 2016, 113, 230.

[18]

Ye YX, Liu CZ, Wang H, Nieh TG. Friction and wear behavior of a single-phase equiatomic TiZrHfNb high-entropy alloy studied using a nanoscratch technique. Acta Mater., 2018, 147, 78.

[19]

Chuang MH, Tsai MH, Wang WR, Lin SJ, Yeh JW. Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy, high-entropy alloys. Acta Mater., 2011, 59(16): 6308.

[20]

Ren F, Arshad SN, Bellon P, Averback RS, Pouryazdan M, Hahn H. Sliding wear-induced chemical nanolayering in Cu—Ag, and its implications for high wear resistance. Acta Mater., 2014, 72, 148.

[21]

C. Greiner, J. Gagel, and P. Gumbsch, Solids under extreme shear: Friction-mediated subsurface structural transformations, Adv. Mater., 31(2019), No. 16, art. No. 1806705.

[22]

Holmberg K, Andersson P, Erdemir A. Global energy consumption due to friction in passenger cars. Tribol. Int., 2012, 47, 221.

[23]

Archard JF. Contact and rubbing of flat surfaces. J. Appl. Phys., 1953, 24(8): 981.

[24]

Basu I, De Hosson JTM. Strengthening mechanisms in high entropy alloys: Fundamental issues. Scripta Mater., 2020, 187, 148.

[25]

Ye YF, Wang Q, Lu J, Liu CT, Yang Y. High-entropy alloy: Challenges and prospects. Mater. Today, 2016, 19(6): 349.

[26]

Greiner C, Liu ZL, Strassberger L, Gumbsch P. Sequence of stages in the microstructure evolution in copper under mild reciprocating tribological loading. ACS Appl. Mater. Interfaces, 2016, 8(24): 15809.

[27]

C. Nagarjuna, H.J. You, S. Ahn, J.W. Song, K.Y. Jeong, B. Madavali, G. Song, Y.S. Na, J.W. Won, H.S. Kim, and S.J. Hong, Worn surface and subsurface layer structure formation behavior on wear mechanism of CoCrFeMnNi high entropy alloy in different sliding conditions, Appl. Surf. Sci., 549(2021), art. No. 149202.

[28]

Dollmann A, Kauffmann A, Heilmaier M, Haug C, Greiner C. Microstructural changes in CoCrFeMnNi under mild tribological load. J. Mater. Sci., 2020, 55(26): 12353.

[29]

Y.S. Geng, J. Chen, H. Tan, J. Cheng, J. Yang, and W.M. Liu, Vacuum tribological behaviors of CoCrFeNi high entropy alloy at elevated temperatures, Wear, 456–457(2020), art. No. 203368.

[30]

Gludovatz B, Hohenwarter A, Catoor D, Chang EH, George EP, Ritchie RO. A fracture-resistant high-entropy alloy for cryogenic applications. Science, 2014, 345(6201): 1153.

[31]

Wu Z, Bei H, Pharr GM, George EP. Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures. Acta Mater., 2014, 81, 428.

[32]

Zaddach AJ, Niu C, Koch CC, Irving DL. Mechanical properties and stacking fault energies of NiFeCrCoMn high-entropy alloy. JOM, 2013, 65(12): 1780.

[33]

Kireeva IV, Chumlyakov YI, Pobedennaya ZV, Kuksgausen IV, Karaman I. Orientation dependence of twinning in single crystalline CoCrFeMnNi high-entropy alloy. Mater. Sci. Eng. A, 2017, 705, 176.

[34]

Laplanche G, Kostka A, Horst OM, Eggeler G, George EP. Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy. Acta Mater., 2016, 118, 152.

[35]

Yang MX, Yan DS, Yuan FP, Jiang P, Ma E, Wu XL. Dynamically reinforced heterogeneous grain structure prolongs ductility in a medium-entropy alloy with gigapascal yield strength. Proc. Natl. Acad. Sci. U. S. A., 2018, 115(28): 7224.

[36]

Yang L, Cheng Z, Zhu WW, Zhao CC, Ren FZ. Significant reduction in friction and wear of a high-entropy alloy via the formation of self-organized nanolayered structure. J. Mater. Sci. Technol., 2021, 73, 1.

[37]

Tao NR, Lu K. Nanoscale structural refinement via deformation twinning in face-centered cubic metals. Scripta Mater., 2009, 60(12): 1039.

[38]

X.B. Guo, I. Baker, F.E. Kennedy, S.P. Ringer, H.S. Chen, W.D. Zhang, Y. Liu, and M. Song, A comparison of the dry sliding wear of single-phase f.c.c. carbon-doped Fe40.4Ni11.3Mn34.8Al7.5Cr6 and CoCrFeMnNi high entropy alloys with 316 stainless steel, Mater. Charact., 170(2020), art. No. 110693.

[39]

Senkov ON, Wilks GB, Scott JM, Miracle DB. Mechanical properties of Nb25Mo25Ta25W25 and 20Nb20Mo20Ta20W20 refractory high entropy alloys. Intrometallics, 2011, 19(5): 698.

[40]

Wu YD, Cai YH, Wang T, Si JJ, Zhu J, Wang YD, Hui XD. A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties. Mater. Lett., 2014, 130, 277.

[41]

Eleti RR, Bhattacharjee T, Shibata A, Tsuji N. Unique deformation behavior and microstructure evolution in high temperature processing of HfNbTaTiZr refractory high entropy alloy. Acta Mater., 2019, 171, 132.

[42]

Huang TD, Wu SY, Jiang H, Lu YP, Wang TM, Li TJ. Effect of Ti content on microstructure and properties of TixZrVNb refractory high-entropy alloys. Int. J. Miner. Metall. Mater., 2020, 27(10): 1318.

[43]

Senkov ON, Senkova SV, Woodward C. Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys. Acta Mater., 2014, 68, 214.

[44]

Alvi S, Akhtar F. High temperature tribology of Cu-MoTaWV high entropy alloy. Wear, 2019, 426–427, 412.

[45]

Guo YX, Liu QB. MoFeCrTiWAlNb refractory high-entropy alloy coating fabricated by rectangular-spot laser cladding. Intermetallics, 2018, 102, 78.

[46]

Poulia A, Georgatis E, Karantzalis A. Evaluation of the microstructural aspects, mechanical properties and dry sliding wear response of MoTaNbVTi refractory high entropy alloy. Met. Mater. Int., 2019, 25(6): 1529.

[47]

Mathiou C, Poulia A, Georgatis E, Karantzalis AE. Microstructural features and dry-sliding wear response of MoTaNbZrTi high entropy alloy. Mater. Chem. Phys., 2018, 210, 126.

[48]

M. Pole, M. Sadeghilaridjani, J. Shittu, A. Ayyagari, and S. Mukherjee, High temperature wear behavior of refractory high entropy alloys based on 4-5-6 elemental palette, J. Alloys Compd., 843(2020), art. No. 156004.

[49]

A. Poulia, E. Georgatis, A. Lekatou, and A. Karantzalis, Dry-sliding wear response of MoTaWNbV high entropy alloy, Adv. Eng. Mater., 19(2017), No. 2, art. No. 1600535.

[50]

N.B. Hua, W.J. Wang, Q.T. Wang, Y.X. Ye, S.H. Lin, L. Zhang, Q.H. Guo, J. Brechtl, and P.K. Liaw, Mechanical, corrosion, and wear properties of biomedical Ti-Zr-Nb-Ta-Mo high entropy alloys, J. Alloys Compd., 861(2021), art. No. 157997.

[51]

H.L. Huang, Y. Wu, J.Y. He, H. Wang, X.J. Liu, K. An, W. Wu, and Z.P. Lu, Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering, Adv. Mater., 29(2017), No. 30, art. No. 1701678.

[52]

Lee C, Song G, Gao MC, Feng R, Chen PY, Brechtl J, Chen Y, An K, Guo W, Poplawsky JD, Li S, Samaei AT, Chen W, Hu A, Choo H, Liaw PK. Lattice distortion in a strong and ductile refractory high-entropy alloy. Acta Mater., 2018, 160, 158.

[53]

C. Lee, G. Kim, Y. Chou, B.L. Musicó, M.C. Gao, K. An, G. Song, Y.C. Chou, V. Keppens, W. Chen, and P.K. Liaw, Temperature dependence of elastic and plastic deformation behavior of a refractory high-entropy alloy, Sci. Adv., 6(2020), No. 37, art. No. eaaz4748.

[54]

M. Sadeghilaridjani, M. Pole, S. Jha, S. Muskeri, N. Ghodki, and S. Mukherjee, Deformation and tribological behavior of ductile refractory high-entropy alloys, Wear, 478–479(2021), art. No. 203916.

[55]

V. Bhardwaj, Q. Zhou, F. Zhang, W.C. Han, Y. Du, K. Hua, and H.F. Wang, Effect of Al addition on the microstructure, mechanical and wear properties of TiZrNbHf refractory high entropy alloys, Tribol. Int., 160(2021), art. No. 107031.

[56]

G.Y. Deng, A.K. Tieu, L.H. Su, P. Wang, L. Wang, X.D. Lan, S.G. Cui, and H.T. Zhu, Investigation into reciprocating dry sliding friction and wear properties of bulk CoCrFeNiMo high entropy alloys fabricated by spark plasma sintering and subsequent cold rolling processes: Role of Mo element concentration, Wear, 460–461(2020), art. No. 203440.

[57]

J.W. Miao, H. Liang, A.J. Zhang, J.Y. He, J.H. Meng, and Y.P. Lu, Tribological behavior of an AlCoCrFeNi2.1 eutectic high entropy alloy sliding against different counterfaces, Tribol. Int., 153(2021), art. No. 106599.

[58]

Haghdadi N, Guo T, Ghaderi A, Hodgson PD, Barnett MR, Fabijanic DM. The scratch behaviour of AlxCoCrFeNi (x=0.3 and 1.0) high entropy alloys. Wear, 2019, 428–429, 293.

[59]

Chen M, Lan LW, Shi XH, Yang HJ, Zhang M, Qiao JW. The tribological properties of Al06CoCrFeNi high-entropy alloy with the σ phase precipitation at elevated temperature. J. Alloys Compd., 2019, 777, 180.

[60]

Y.S. Geng, H. Tan, L. Wang, A.K. Tieu, J. Chen, J. Cheng, and J. Yang, Nano-coupled heterostructure induced excellent mechanical and tribological properties in AlCoCrFeNi high entropy alloy, Tribol. Int., 154(2021), art. No. 106662.

[61]

Joseph J, Haghdadi N, Shamlaye K, Hodgson P, Barnett M, Fabijanic D. The sliding wear behaviour of CoCrFeM-nNi and AlxCoCrFeNi high entropy alloys at elevated temperatures. Wear, 2019, 428–429, 32.

[62]

Niu SZ, Kou HC, Wang J, Li JS. Improved tensile properties of Al0.5CoCrFeNi high-entropy alloy by tailoring microstructures. Rare Met., 2021, 40(9): 1.

[63]

Yang HX, Li JS, Guo T, Wang WY, Kou HC, Wang J. Evolution of microstructure and hardness in a dual-phase Al0.5CoCrFeNi high-entropy alloy with different grain sizes. Rare Met., 2020, 39(2): 156.

[64]

Hou JX, Fan J, Yang HJ, Wang Z, Qiao JW. Deformation behavior and plastic instability of boronized Al0.25CoCrFeNi high-entropy alloys. Int. J. Miner. Metall. Mater., 2020, 27(10): 1363.

[65]

Wei CB, Du XH, Lu YP, Jiang H, Li TJ, Wang TM. Novel as-cast AlCrFe2Ni2Ti0.5 high-entropy alloy with excellent mechanical properties. Int. J. Miner. Metall. Mater., 2020, 27(10): 1312.

[66]

Zhang M, Hou JX, Yang HJ, Tan YQ, Wang XJ, Shi XH, Guo RP, Qiao JW. Tensile strength prediction of dual-phase Al0.6CoCrFeNi high-entropy alloys. Int. J. Miner. Metall. Mater., 2020, 27(10): 1341.

[67]

M.Y. Wu, K. Chen, Z. Xu, and D.Y. Li, Effect of Ti addition on the sliding wear behavior of AlCrFeCoNi high-entropy alloy, Wear, 462–463(2020), art. No. 203493.

[68]

Ye XC, Wang T, Xu ZY, Liu C, Wu HH, Zhao GW, Fang D. Effect of Ti content on microstructure and mechanical properties of CuCoFeNi high-entropy alloys. Int. J. Miner. Metall. Mater., 2020, 27(10): 1326.

[69]

Z. Cheng, L. Yang, Z.K. Huang, T. Wan, M.Y. Zhu, and F.Z. Ren, Achieving low wear in a μ-phase reinforced high-entropy alloy and associated subsurface microstructure evolution, Wear, 474–475(2021), art. No. 203755.

[70]

Y. Fu, C. Huang, C.W. Du, J. Li, C.D. Dai, H. Luo, Z.Y. Liu, and X.G. Li, Evolution in microstructure, wear, corrosion, and tribocorrosion behavior of Mo-containing high-entropy alloy coatings fabricated by laser cladding, Corros. Sci., 191(2021), art. No. 109727.

[71]

Yu Y, He F, Qiao ZH, Wang ZJ, Liu WM, Yang J. Effects of temperature and microstructure on the triblogical properties of CoCrFeNiNbx eutectic high entropy alloys. J. Alloys Compd., 2019, 775, 1376.

[72]

Malatji N, Popoola API, Lengopeng T, Pityana S. Effect of Nb addition on the microstructural, mechanical and electrochemical characteristics of AlCrFeNiCu high-entropy alloy. Int. J. Miner. Metall. Mater., 2020, 27(10): 1332.

[73]

He JY, Liu WH, Wang H, Wu Y, Liu XJ, Nieh TG, Lu ZP. Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system. Acta Mater., 2014, 62, 105.

[74]

Wu JM, Lin SJ, Yeh JW, Chen SK, Huang YS, Chen HC. Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content. Wear, 2006, 261(5–6): 513.

[75]

Zhang GJ, Tian QW, Yin KX, Niu SQ, Wu MH, Wang YN, Huang JC. Microstructure, hardness and wear behavior of AlxCoCrFe2Ni (x = 0.3, 0.7, 1.0) high entropy alloy coatings prepared by laser cladding. JOM, 2021, 73(11): 3597.

[76]

George EP, Curtin WA, Tasan CC. High entropy alloys: A focused review of mechanical properties and deformation mechanisms. Acta Mater., 2020, 188, 435.

[77]

Hsu CY, Sheu TS, Yeh JW, Chen SK. Effect of iron content on wear behavior of AlCoCrFexMo0.5Ni high-entropy alloys. Wear, 2010, 268(5–6): 653.

[78]

D. Kumar, J. B, D.K. Meena, E.W. Huang, Y.J. Chang, A.C. Yeh, J. Jain, S. Neelakantan, and N.N. Gosvami, Reversal of favorable microstructure under plastic ploughing vs. interfacial shear induced wear in aged Co1.5CrFeNi1.5Ti0.5 high-entropy alloy, Wear, 468–469(2021), art. No. 203595.

[79]

B. Gwalani, T. Torgerson, S. Dasari, A. Jagetia, M.S.K.K.Y. Nartu, S. Gangireddy, M. Pole, T. Wang, T.W. Scharf, and R. Banerjee, Influence of fine-scale B2 precipitation on dynamic compression and wear properties in hypo-eutectic Al0.5CoCrF-eNi high-entropy alloy, J. Alloys Compd., 853(2021), art. No. 157126.

[80]

Y.C. Cai, L.S. Zhu, Y. Cui, M.D. Shan, H.J. Li, Y. Xin, and J. Han, Fracture and wear mechanisms of FeMnCrNiCo + x(TiC) composite high-entropy alloy cladding layers, Appl. Surf. Sci., 543(2021), art. No. 148794.

[81]

P.F. Jiang, C.H. Zhang, S. Zhang, J.B. Zhang, J. Chen, and Y. Liu, Fabrication and wear behavior of TiC reinforced Fe-CoCrAlCu-based high entropy alloy coatings by laser surface alloying, Mater. Chem. Phys., 255(2020), art. No. 123571.

[82]

T. Zhu, H. Wu, R. Zhou, N.Y. Zhang, Y. Yin, L.X. Liang, Y. Liu, J. Li, Q. Shan, Q.X. Li, and W.D. Huang, Microstructures and tribological properties of TiC reinforced FeCoNiCuAl high-entropy alloy at normal and elevated temperature, Metals, 10(2020), No. 3, art. No. 387.

[83]

Z.M. Guo, A.J. Zhang, J.S. Han, and J.H. Meng, Microstructure, mechanical and tribological properties of CoCrFeNiMn high entropy alloy matrix composites with addition of Cr3C2, Tribol. Int., 151(2020), art. No. 106436.

[84]

Zhou R, Chen G, Liu B, Wang JW, Han LL, Liu Y. Microstructures and wear behaviour of (FeCoCrNi)1−x(WC)x high entropy alloy composites. Int. J. Refract. Met. Hard Mater., 2018, 75, 56.

[85]

X.Y. Liu, H. Yin, and Y. Xu, Microstructure, mechanical and tribological properties of oxide dispersion strengthened high-entropy alloys, Materials, 10(2017), No. 11, art. No. 1312.

[86]

Hornbogen E. The role of fracture toughness in the wear of metals. Wear, 1975, 33(1): 251.

[87]

Wang YX, Yang YJ, Yang HJ, Zhang M, Qiao JW. Effect of nitriding on the tribological properties of Al1.3CoCuFeNi2 high-entropy alloy. J. Alloys Compd., 2017, 725, 365.

[88]

Wang YX, Yang YJ, Yang HJ, Zhang M, Ma SG, Qiao JW. Microstructure and wear properties of nitrided AlCoCrFeNi high-entropy alloy. Mater. Chem. Phys., 2018, 210, 233.

[89]

Lan LW, Wang XJ, Guo RP, Yang HJ, Qiao JW. Effect of environments and normal loads on tribological properties of nitrided Ni45(FeCoCr)40(AlTi)15 high-entropy alloys. J. Mater. Sci. Technol., 2020, 41, 85.

[90]

Hou JX, Zhang M, Yang HJ, Qiao JW, Wu YC. Surface strengthening in Al0.25CoCrFeNi high-entropy alloy by boronizing. Mater. Lett., 2019, 238, 258.

[91]

Y.H. Wu, H.J. Yang, R.P. Guo, X.J. Wang, X.H. Shi, P.K. Liaw, and J.W. Qiao, Tribological behavior of boronized Al0.1CoCrFeNi high-entropy alloys under dry and lubricated conditions, Wear, 460–461(2020), art. No. 203452.

[92]

Verma A, Tarate P, Abhyankar AC, Mohape MR, Gowtam DS, Deshmukh VP, Shanmugasundaram T. High temperature wear in CoCrFeNiCux high entropy alloys: The role of Cu. Scripta Mater., 2019, 161, 28.

[93]

Liu XY, Zhou SQ, Xu Y. Microstructure and tribological performance of Fe50Mn30Co10Cr10 high-entropy alloy based self-lubricating composites. Mater. Lett., 2018, 233, 142.

[94]

Y.S. Geng, J. Chen, H. Tan, J. Cheng, S.Y. Zhu, and J. Yang, Tribological performances of CoCrFeNiAl high entropy alloy matrix solid-lubricating composites over a wide temperature range, Tribol. Int., 157(2021), art. No. 106912.

[95]

Zhang AJ, Han JS, Su B, Pen DL, Meng JH. Microstructure, mechanical properties and tribological performance of CoCrFeNi high entropy alloy matrix self-lubricating composite. Mater. Des., 2017, 114, 253.

[96]

Zhang AJ, Han JS, Su B, Meng JH. A novel CoCrFeNi high entropy alloy matrix self-lubricating composite. J. Alloys Compd., 2017, 725, 700.

[97]

P.Y. Shi, Y. Yu, N.N. Xiong, M.Z. Liu, Z.H. Qiao, G.W. Yi, Q.Q. Yao, G.P. Zhao, E.Q. Xie, and Q.H. Wang, Microstructure and tribological behavior of a novel atmospheric plasma sprayed AlCoCrFeNi high entropy alloy matrix self-lubricating composite coatings, Tribol. Int., 151(2020), art. No. 106470.

[98]

A.O. Moghaddam, M.N. Samodurova, K. Pashkeev, M. Doubenskaia, A. Sova, and E.A. Trofimov, A novel intermediate temperature self-lubricating CoCrCu1−xFeNix high entropy alloy fabricated by direct laser cladding, Tribol. Int., 156(2021), art. No. 106857.

[99]

Zhang AJ, Han JS, Su B, Meng JH. A promising new high temperature self-lubricating material: CoCrFeNiS0.5 high entropy alloy. Mater. Sci. Eng. A, 2018, 731, 36.

[100]

Joseph J, Haghdadi N, Annasamy M, Kada S, Hodgson PD, Barnett MR, Fabijanic DM. On the enhanced wear resistance of CoCrFeMnNi high entropy alloy at intermediate temperature. Scripta Mater., 2020, 186, 230.

[101]

Liu WH, Wu Y, He JY, Zhang Y, Liu CT, Lu ZP. The phase competition and stability of high-entropy alloys. JOM, 2014, 66(10): 1973.

[102]

Otto F, Dlouhý A, Pradeep KG, Kuběnová M, Raabe D, Eggeler G, George EP. Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures. Acta Mater., 2016, 112, 40.

[103]

Pickering EJ, Muñoz-Moreno R, Stone HJ, Jones NG. Precipitation in the equiatomic high-entropy alloy CrMnFeCoNi. Scripta Mater., 2016, 113, 106.

[104]

Jin G, Cai ZB, Guan YJ, Cui XF, Liu Z, Li Y, Dong ML, Zhang D. High temperature wear performance of laser-cladded FeNiCoAlCu high-entropy alloy coating. Appl. Surf. Sci., 2018, 445, 113.

[105]

Wei Y, Fu Y, Pan ZM, Ma YC, Cheng HX, Zhao QC, Luo H, Li XG. Influencing factors and mechanism of high-temperature oxidation of high-entropy alloys: A review. Int. J. Miner. Metall. Mater., 2021, 28(6): 915.

[106]

Du LM, Lan LW, Zhu S, Yang HJ, Shi XH, Liaw PK, Qiao JW. Effects of temperature on the tribological behavior of Al0.25CoCrFeNi high-entropy alloy. J. Mater. Sci. Technol., 2019, 35(5): 917.

[107]

B.B. Xin, A.J. Zhang, J.S. Han, and J.H. Meng, The tribological properties of carbon doped Al0.2Co1.5CrFeNi1.5Ti0.5 high entropy alloys, Wear, 484–485(2021), art. No. 204045.

[108]

Rupert TJ, Schuh CA. Sliding wear of nanocrystalline Ni-W: Structural evolution and the apparent breakdown of Archard scaling. Acta Mater., 2010, 58(12): 4137.

AI Summary AI Mindmap
PDF

173

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/