Effect of Al substitution on phase evolution in synthesized Mg2Cu nanoparticles

Elham Mohseni-Sohi , Farshid Kashani Bozorg

International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (1) : 63 -71.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2023, Vol. 30 ›› Issue (1) : 63 -71. DOI: 10.1007/s12613-021-2368-1
Article

Effect of Al substitution on phase evolution in synthesized Mg2Cu nanoparticles

Author information +
History +
PDF

Abstract

The effect of Mg replacement with Al on the discharge capacity of Mg2Cu powder mixture was investigated. The mixture of nanocrystalline powder was prepared via mechanical alloying (MA) technique with a high energy planetary ball mill. In addition, different moles of Al (0.05, 0.1, 0.15, 0.2, and 0.3 M) were substituted to Mg2Cu powder. X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were used to analyze changes in structure, morphology, and grain size. The obtained powder was utilized as an anode in a nickel—metal hydride battery (Ni—MH). In the specimens with 0.05 M Al content, the orthorhombic structure of Mg2Cu is emerged after 5 h milling. The results reveal that more than 0.1 M Al substitution leads to an appearance of MgCu2 peaks. Al substitution does not affect microstructure uniformity; however, it causes a decrease in crystalline size and lattice parameters. The selected area diffraction (SAD) pattern elucidates that the electrode with the Mg1.9Al0.1Cu chemical composition and 20 h milling has the maximum discharge capacity.

Keywords

Mg2Cu / mechanical alloying / nanocrystalline / discharge capacity

Cite this article

Download citation ▾
Elham Mohseni-Sohi, Farshid Kashani Bozorg. Effect of Al substitution on phase evolution in synthesized Mg2Cu nanoparticles. International Journal of Minerals, Metallurgy, and Materials, 2023, 30(1): 63-71 DOI:10.1007/s12613-021-2368-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Goidin VV, Molchanov VV, Buyanov RA. Mechanochemical synthesis of intermetallic hydrides at elevated hydrogen pressures. Inorg. Mater., 2004, 40(11): 1165.

[2]

Dergachev YM, Gorichev IG, Kuznetsov NT. Kinetics of aluminum hydride thermal decomposition. Inorg. Mater., 2000, 36(5): 458.

[3]

Song JZ, Zhao ZY, Zhao X, Fu RD, Han SM. Hydrogen storage properties of MgH2 co-catalyzed by LaH3 and NbH. Int. J. Miner. Metall. Mater., 2017, 24(10): 1183.

[4]

Ovshinsky SR, Fetcenko MA, Ross J. A nickel metal hydride battery for electric vehicles. Science, 1993, 260(5105): 176.

[5]

Mi WL, Liu ZS, Kimura T, Kamegawa A, Wang HL. Crystal structure and hydrogen storage properties of (La, Ce)Ni5−xMx (M = Al, Fe, or Co) alloys. Int. J. Miner. Metall. Mater., 2019, 26(1): 108.

[6]

Taniguchi A, Fujioka N, Ikoma M, Ohta A. Development of nickel/metal-hydride batteries for EVs and HEVs. J. Power Sources, 2001, 100(1–2): 117.

[7]

Ozaki T, Kanemoto M, Kakeya T, Kitano Y, Kuzuhara M, Watada M, Tanase S, Sakai T. Stacking structures and electrode performances of rare earth-Mg-Ni-based alloys for advanced nickel-metal hydride battery. J. Alloys Compd., 2007, 446–447, 620.

[8]

Li Y, Tao Y, Huo Q. Effect of stoichiometry and Cu-substitution on the phase structure and hydrogen storage properties of Ml-Mg-Ni-based alloys. Int. J. Miner. Metall. Mater., 2015, 22(1): 86.

[9]

Yazvinskaya NN, Galushkin NE, Galushkin DN, Galushkina IA. Analysis of thermal runaway aftereffects in nickel-cadmium batteries. Int. J. Electrochem. Sci., 2016, 11(12): 10287.

[10]

Yazvinskaya NN, Galushkin NE, Galushkin DN, Galushkina IA. Hydrogen amount estimation in electrodes of nickel-cadmium batteries depending on their operating life. Int. J. Electrochem. Sci., 2016, 11, 7843.

[11]

Dong ZT, Li Y, Ren KL, Yang SQ, Zhao YM, Yuan YJ, Zhang L, Han SM. Enhanced electrochemical properties of LaFeO3 with Ni modification for MH-Ni batteries. Int. J. Miner. Metall. Mater., 2018, 25(10): 1201.

[12]

Tojo T, Yamamoto I, Zhang QW, Saito F. Discharge properties of Mg2Ni-Ni alloy synthesized by mechanical alloying. Adv. Powder Technol., 2005, 16(6): 649.

[13]

Gasiorowski A, Iwasieczko W, Skoryna D, Drulis H, Jurczyk M. Hydriding properties of nanocrystalline Mg2−xMxNi alloys synthesized by mechanical alloying (M=Mn, Al). J. Alloys Compd., 2004, 364(1–2): 283.

[14]

Szajek A, Jurczyk M, Okońska I, Smardz K, Jankowska E, Smardz L. Electrochemical and electronic properties of nanocrystalline Mg-based hydrogen storage materials. J. Alloys Compd., 2007, 436(1–2): 345.

[15]

Tanaka K, Takeichi N, Tanaka H, Kuriyama N, Ueda T, Tsukahara M, Miyamura H, Kikuchi S. TEM investigation of micro/nano-structures and hydrogen storage properties of Mg/Cu super-laminates and Mg2Cu powder. Microsc. Microanal., 2007, 13(S02): 1098.

[16]

Yao X, McDonald SD, Dahle AK, Davidson CJ, StJohn DH. Modeling of grain refinement: Part III. Al—7Si—0.3Mg aluminum alloy. J. Mater. Res., 2008, 23(5): 1301.

[17]

Volkova LS, Kalinnikov GV, Ivanov AV, Shilkin SP. Synthesis of Mg2Cu and MgCu2 nanoparticles In a KCl—NaCl—MgCl2 melt. Inorg. Mater., 2012, 48(11): 1078.

[18]

Fokin VN, Fursikov PV, Fokina EE, Tarasov BP. Hydrogenation of eutectic alloy in the Mg—Al system. Inorg. Mater., 2021, 57(3): 234.

[19]

Anik M, Karanfil F, Küçükdeveci N. Development of the high performance magnesium based hydrogen storage alloy. Int. J. Hydrogen Energy, 2012, 37(1): 299.

[20]

Cui N, Luan B, Liu HK, Zhao HJ, Dou SX. Characteristics of magnesium-based hydrogen-storage alloy electrodes. J. Power Sources, 1995, 55(2): 263.

[21]

Cui N, He P, Luo JL. Magnesium-based hydrogen storage materials modified by mechanical alloying. Acta Mater., 1999, 47(14): 3737.

[22]

Reilly JJ, Wiswall RH. Reaction of hydrogen with alloys of magnesium and copper. Inorg. Chem., 1967, 6(12): 2220.

[23]

Jurczyk M, Smardz L, Szajek A. Nanocrystalline materials for Ni-MH batteries. Mater. Sci. Eng. B, 2004, 108(1–2): 67.

[24]

Novák P, Vojtěch D, Průša F, Šerák J, Fabián T. Structure and properties of magnesium-based hydrogen storage alloys. Mater. Sci. Forum, 2007, 567–568, 217.

[25]

Lu L, Zhang YF. Influence of process control agent on interdiffusion between Al and Mg during mechanical alloying. J. Alloys Compd., 1999, 290(1–2): 279.

[26]

Jurczyk M, Smardz L, Okonska I, Jankowska E, Nowak M, Smardz K. Nanoscale Mg-based materials for hydrogen storage. Int. J. Hydrogen Energy, 2008, 33(1): 374.

[27]

Yao XD, Lu GQ. Magnesium-based materials for hydrogen storage: Recent advances and future perspectives. Chin. Sci. Bull., 2008, 53(16): 2421

[28]

Jurczyk M, Okonska I, Iwasieczko W, Jankowska E, Drulis H. Thermodynamic and electrochemical properties of nanocrystalline Mg2Cu-type hydrogen storage materials. J. Alloys Compd., 2007, 429(1–2): 316.

[29]

Mulas G, Varga M, Bertóti I, Molnár Á, Cocco G, Szépvölgyi J. Cu40Mg60 and Cu-MgO powders prepared by ball-milling: Characterization and catalytic tests. Mater. Sci. Eng., A, 1999, 267(2): 193.

[30]

Mulas G, Deledda S, Cocco G. The mechanochemical conversion of acetone to methyl isobutyl ketone over Cu-Mg based substrates. Mater. Sci. Eng., A, 1999, 267(2): 214.

[31]

Ma Z, Liu Y, Yu L, Cai Q. Investigation of phase composition and nanoscale microstructure of high-energy ball-milled MgCu sample. Nanoscale Res. Lett., 2012, 7(1): 390.

[32]

Wiswall R. Alefeld G, Völkl J. Hydrogen storage in metals. Hydrogen in Metals II. Topics in Applied Physics, 1978, Berlin, Heidelberg, Springer-Verlag, 201

[33]

Rousselot S, Bichat MP, Guay D, Roué L. Structure and electrochemical hydrogen storage properties of mg-ti based materials prepared by mechanical alloying. ECS Trans., 2019, 16(42): 91.

[34]

Ouyang LZ, Yang TH, Zhu M, Min D, Luo TZ, Wang H, Xiao FM, Tang RH. Hydrogen storage and electrochemical properties of Pr, Nd and Co-free La13.9Sm24.7Mg1.5Ni58Al1.7Zr0.14Ag0.07 alloy as a nickel-metal hydride battery electrode. J. Alloys Compd., 2018, 735, 98.

[35]

Bliznakov S, Lefterova E, Dimitrov N, Petrov K, Popov A. A study of the Al content impact on the properties of MmNi4.4−xCo0.6Alx alloys as precursors for negative electrodes in NiMH batteries. J. Power Sources, 2008, 176(1): 381.

[36]

Souza EC, Ticianelli EA. On the properties of LaNi5-type metal hydride alloys. J. Brazalian Chem. Soc., 2003, 14, 544.

[37]

Zeng RC, Liu ZG, Zhang F, Li SQ, He QK, Cui HZ, Han EH. Corrosion resistance of in situ Mg—Al hydrotalcite conversion film on AZ31 magnesium alloy by one-step formation. Trans. Nonferrous Met. Soc. China, 2015, 25(6): 1917.

[38]

Wagih A. Effect of Mg addition on mechanical and thermoelectrical properties of Al-Al2O3 nanocomposite. Trans. Nonferrous Met. Soc. China, 2016, 26(11): 2810.

[39]

Mani N, Ramaprabhu S. Effect of substitutional elements on hydrogen absorption properties in Mm-based AB5 alloys. J. Alloys Compd., 2004, 363(1–2): 275.

[40]

Sakai T, Miyamura H, Kuriyama N, Kato A, Oguro K, Ishikawa H, Iwakura C. The influence of small amounts of added elements on various anode performance characteristics for LaNi2.5Co2.5-based alloys. J. Less Common Met., 1990, 159, 127.

[41]

Shin D, Liu ZK. Enthalpy of mixing for ternary fcc solid solutions from special quasirandom structures. Calphad, 2008, 32(1): 74.

[42]

Tanaka MX, Takeichi N, Takeshita HT, Kiyobayashi T. Effect of ball-milling on the properties of Mg2Cu hydrogen storage alloy. Mater. Trans., 2008, 49(11): 2698.

[43]

Ma ZQ, Liu YC, Yu LM, Cai Q. Correction: Investigation of phase composition and nanoscale microstructure of high-energy ball-milled MgCu sample. Nanoscale Res. Lett., 2013, 8(1): 186.

[44]

J. Gilbert Kaufman, Introduction to Aluminium Alloys and Tempers, ASM International, 2000.

[45]

Koch CC. The synthesis and structure of nanocrystalline materials produced by mechanical attrition: A review. Nanostruct. Mater., 1993, 2(2): 109.

[46]

Mohri M, Kashani Bozorg SF. An electrochemical investigation of nanocrystalline Mg2Ni0.75Nb0.25 compound synthesized by mechanical alloying. Int. J. Mod. Phys. B, 2008, 22(18n19): 2939.

[47]

Chen J, Yao P, Bradhurst DH, Dou SX, Liu HK. Mg2Ni-based hydrogen storage alloys for metal hydride electrodes. J. Alloys Compd., 1999, 293–295, 675.

[48]

Abbasi R, Kashani-Bozorg SF. Electrochemical and kinetic performance of amorphous/nanostructured TiNi-based inter-metallic compound with Nb substitution synthesized by mechanical alloying. J. Mater. Res., 2018, 33(22): 3774.

AI Summary AI Mindmap
PDF

170

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/