Optimisation of alloy composition for highly-formable magnesium sheet

Zhuoran Zeng , Mingzhe Bian , Shiwei Xu , Weineng Tang , Chris Davies , Nick Birbilis , Jianfeng Nie

International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (7) : 1388 -1395.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (7) : 1388 -1395. DOI: 10.1007/s12613-021-2365-4
Article

Optimisation of alloy composition for highly-formable magnesium sheet

Author information +
History +
PDF

Abstract

The effectiveness of Ca or Gd addition on ductility and formability of Mg-Zn-Zr based dilute alloys in deep drawing has not been systematically compared previously. In this study, formable Mg-Zn-Gd-Zr and Mg-Zn-Ca-Zr sheet alloys are produced by hot rolling. These sheets have similarly weakened basal texture, but the sheet of the Mg-Zn-Gd-Zr alloys has higher ductility and formability than that of Mg-Zn-Ca-Zr alloys. The combined addition of 0.2wt% Ca and 0.4wt% Gd to the Mg-1Zn-0.5Zr (wt%) alloy leads to a Mg-1Zn-0.4Gd-0.2Ca-0.5Zr alloy that has even better ductility, and its formability during deep drawing is comparable to the benchmark Al6016 sheet. An increase in Ca content from 0.2wt% to 0.5wt% leads to decreased sheet ductility and formability, predominantly due to grain boundary embrittlement.

Keywords

magnesium sheet alloy / texture / microstructure / formability / solute segregation

Cite this article

Download citation ▾
Zhuoran Zeng, Mingzhe Bian, Shiwei Xu, Weineng Tang, Chris Davies, Nick Birbilis, Jianfeng Nie. Optimisation of alloy composition for highly-formable magnesium sheet. International Journal of Minerals, Metallurgy, and Materials, 2022, 29(7): 1388-1395 DOI:10.1007/s12613-021-2365-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Joost WJ, Krajewski PE. Towards magnesium alloys for high-volume automotive applications. Scripta Mater., 2017, 128, 107.

[2]

Pollock TM. Weight loss with magnesium alloys. Science, 2010, 328(5981): 986.

[3]

Yi S, Bohlen J, Heinemann F, Letzig D. Mechanical anisotropy and deep drawing behaviour of AZ31 and ZE10 magnesium alloy sheets. Acta Mater., 2010, 58(2): 592.

[4]

Stanford N, Barnett M. Effect of composition on the texture and deformation behaviour of wrought Mg alloys. Scripta Mater., 2008, 58(3): 179.

[5]

Chino Y, Mabuchi M. Enhanced stretch formability of Mg-Al-Zn alloy sheets rolled at high temperature (723 K). Scripta Mater., 2009, 60(6): 447.

[6]

Suh BC, Shim MS, Shin KS, Kim NJ. Current issues in magnesium sheet alloys: Where do we go from here?. Scripta Mater., 2014, 84–85, 1.

[7]

Chino Y, Sassa K, Mabuchi M. Tensile properties and stretch formability of Mg-1.5 mass%-0.2 mass%Ce sheet rolled at 723 K. Mater. Trans., 2008, 49(7): 1710.

[8]

Zhang KF, Yin DL, Wu DZ. Formability of AZ31 magnesium alloy sheets at warm working conditions. Int. J. Mach. Tools Manuf., 2006, 46(11): 1276.

[9]

Mori KI, Tsuji H. Cold deep drawing of commercial magnesium alloy sheets. J. Jpn. Soc. Technol. Plast., 2007, 48(552): 41.

[10]

Dieter G. Mechanical Metallurgy, 1986, 3rd ed. London, McGrow-Hill, 672

[11]

Polmear I, StJohn D, Nie JF, Qian M. Magnesium alloys. Light Alloys: Metallurgy of the Light Metals, 2017, 5th ed. Oxford, Butterworth-Heinemann, 287.

[12]

Hantzsche K, Bohlen J, Wendt J, Kainer KU, Yi SB, Letzig D. Effect of rare earth additions on microstructure and texture development of magnesium alloy sheets. Scripta Mater., 2010, 63(7): 725.

[13]

Zeng ZR, Zhu YM, Xu SW, Bian MZ, Davies CHJ, Birbilis N, Nie JF. Texture evolution during static recrystallization of cold-rolled magnesium alloys. Acta Mater., 2016, 105, 479.

[14]

Bohlen J, Nürnberg MR, Senn JW, Letzig D, Agnew SR. The texture and anisotropy of magnesium—zinc—rare earth alloy sheets. Acta Mater., 2007, 55(6): 2101.

[15]

Basu I, Al-Samman T. Triggering rare earth texture modification in magnesium alloys by addition of zinc and zirconium. Acta Mater., 2014, 67, 116.

[16]

Chino Y, Ueda T, Otomatsu Y, Sassa K, Huang XS, Suzuki K, Mabuchi M. Effects of Ca on tensile properties and stretch formability at room temperature in Mg-Zn and Mg-Al alloys. Mater. Trans., 2011, 52(7): 1477.

[17]

Hirsch J, Al-Samman T. Superior light metals by texture engineering: Optimized aluminum and magnesium alloys for automotive applications. Acta Mater., 2013, 61(3): 818.

[18]

Nie JF, Shin KS, Zeng ZR. Microstructure, deformation, and property of wrought magnesium alloys. Metall. Mater. Trans. A, 2020, 51(12): 6045.

[19]

Bian MZ, Zeng ZR, Xu SW, Tang WN, Davies CHJ, Birbilis N, Nie JF. Enhanced tensile properties of Mg sheets by a unique thermomechanical processing method. Metall. Mater. Trans. A, 2016, 47(12): 5709.

[20]

Zeng ZR, Bian MZ, Xu SW, Davies CHJ, Birbilis N, Nie JF. Effects of dilute additions of Zn and Ca on ductility of magnesium alloy sheet. Mater. Sci. Eng. A, 2016, 674, 459.

[21]

Vollertsen F. Buschow KHJ, Cahn RW, Flemings MC, Ilschner B, Kramer EJ, Mahajan S, Veyssière P. Metal forming: Microparts. Encyclopedia of Materials: Science and Technology, 2001, 2nd ed. Oxford, Elsevier, 5424.

[22]

C.F. Gu, Micro-Forming and Grain Refinement: Effects of Microstructural and Geometric Scale on Metal Formability [Dissertation], Monash University, 2010.

[23]

Nakata T, Xu C, Uehara Y, Sasaki TT, Kamado S. Origin of texture weakening in a rolled ZEX4101 alloy sheet and its effect on room temperature formability and tensile property. J. Alloys Compd., 2019, 782, 304.

[24]

Bian MZ, Zeng ZR, Xu SW, Zhu SM, Zhu YM, Davies CHJ, Birbilis N, Nie JF. Improving formability of Mg-Ca-Zr sheet alloy by microalloying of Zn. Adv. Eng. Mater., 2016, 18(10): 1763.

[25]

Sasaki TT, Elsayed FR, Nakata T, Ohkubo T, Kamado S, Hono K. Strong and ductile heat-treatable Mg-Sn-Zn-Al wrought alloys. Acta Mater., 2015, 99, 176.

[26]

TerBush JR, Stanford N, Nie JF, Barnett MR. Na partitioning during thermomechanical processing of an Mg-Sn-Zn-Na alloy. Metall. Mater. Trans. A, 2013, 44(11): 5216.

[27]

Li JL, Wang XX, Zhang N, Wu D, Chen RS. Ductility drop of the solutionized Mg-Gd-Y-Zr alloy during tensile deformation at 350 °C. J. Alloys Compd., 2017, 714, 104.

[28]

Hase T, Ohtagaki T, Yamaguchi M, Ikeo N, Mukai T. Effect of aluminum or zinc solute addition on enhancing impact fracture toughness in Mg-Ca alloys. Acta Mater., 2016, 104, 283.

[29]

Humphreys FJ, Hatherly M. Recrystallisation and Related Annealing Phenomena, 2004, 2nd ed. Oxford, Elsevier

[30]

Z.R. Zeng, M.R. Zhou, P. Lynch, F. Mompiou, Q.F. Gu, M. Esmaily, Y.M. Yan, Y. Qiu, S.W. Xu, H. Fujii, C. Davies, J.F. Nie, and N. Birbilis, Deformation modes during room temperature tension of fine-grained pure magnesium, Acta Mater., 206(2021), art. No. 116648.

[31]

H. Somekawa, D.A. Basha, and A. Singh, Deformation behavior at room temperature ranges of fine-grained Mg-Mn system alloys, Mater. Sci. Eng. A, 766(2019), art. No. 138384.

AI Summary AI Mindmap
PDF

133

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/