Optimize two-phase distribution of lithium-rich materials to stabilize structure and suppress voltage attenuation

Yang Yu , Jianling Li , Guimei Han , Zhe Yang , Jianjian Zhong , Feiyu Kang

International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (12) : 2201 -2211.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (12) : 2201 -2211. DOI: 10.1007/s12613-021-2362-7
Article

Optimize two-phase distribution of lithium-rich materials to stabilize structure and suppress voltage attenuation

Author information +
History +
PDF

Abstract

Lithium-rich materials possess the ultra-high specific capacity, but the redox of oxygen is not completely reversible, resulting in voltage attenuation and structural instability. A stepwise co-precipitation method is used for the first time in this paper to achieve the control of the two-phase distribution through controlling the distribution of transition metal elements and realize the modification of particle surface structure without the aid of heterologous ions. The results of characterization tests show that the content of LiMO2 phase inside the particles and the content of Li2MnO3 phase on the surface of the particles are successfully increased, and the surface induced formation of Li4Mn5O12 spinel phase or some disorderly ternary. The electrochemical performance of the modified sample is as follows: LR (pristine) shows specific discharge capacity of 72.7 mA·h·g−1 after 500 cycles at 1 C, while GR (modified sample) shows specific discharge capacity of 137.5 mA·h·g−1 at 1 C, and the discharge mid-voltage of GR still remains above 3 V when cycling to 220 cycles at 1 C (mid-voltage of LR remains above 3 V when cycling to 160 cycles at 1 C). Therefore, deliberately regulating the local state of the two phases is a successful way to reinforced the material structure and inhibition the voltage attenuation.

Keywords

lithium-rich / phase tuning engineering / stepwise co-precipitation / voltage attenuation

Cite this article

Download citation ▾
Yang Yu, Jianling Li, Guimei Han, Zhe Yang, Jianjian Zhong, Feiyu Kang. Optimize two-phase distribution of lithium-rich materials to stabilize structure and suppress voltage attenuation. International Journal of Minerals, Metallurgy, and Materials, 2022, 29(12): 2201-2211 DOI:10.1007/s12613-021-2362-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Seo DH, Lee J, Urban A, Malik R, Kang S, Ceder G. The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials. Nat. Chem., 2016, 8(7): 692.

[2]

Ceder G, Chiang YM, Sadoway DR, Aydinol MK, Jang YI, Huang B. Identification of cathode materials for lithium batteries guided by first-principles calculations. Nature, 1998, 392(6677): 694.

[3]

Yoon WS, Kim KB, Kim MG, Lee MK, Shin HJ, Lee JM, Lee JS, Yo CH. Oxygen contribution on Li-ion intercalation-deintercalation in LiCoO2 investigated by O K-edge and Co L-edge X-ray absorption spectroscopy. J. Phys. Chem. B, 2002, 106(10): 2526.

[4]

Chen ZL, Li J, Zeng XC. Unraveling oxygen evolution in Li-rich oxides: A unified modeling of the intermediate peroxo/superoxo-like dimers. J. Am. Chem. Soc., 2019, 141(27): 10751.

[5]

Z. Wang, X.Y. Lin, J.T. Zhang, D. Wang, C.Y. Ding, Y.M. Zhu, P. Gao, X.X. Huang, and G.W. Wen, Spherical layered Li-rich cathode material: Unraveling the role of oxygen vacancies on improving lithium ion conductivity, J. Power Sources, 462(2020), art. No. 228171.

[6]

Sathiya M, Rousse G, Ramesha K, Laisa CP, Vezin H, Sougrati MT, Doublet ML, Foix D, Gonbeau D, Walker W, Prakash AS, Ben Hassine M, Dupont L, Tarascon JM. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nat. Mater., 2013, 12(9): 827.

[7]

W. Lee, S. Yun, H. Li, J. Kim, H. Lee, K. Kwon, J.Y. Lee, Y.M. Choi, and W.S. Yoon, Anionic redox chemistry as a clue for understanding the structural behavior in layered cathode materials, Small, 16(2020), No. 5, art. No. e1905875.

[8]

Y. Pei, Q. Chen, M.Y. Wang, B. Li, P. Wang, G. Henkelman, L. Zhen, G.Z. Cao, and C.Y. Xu, Reviving reversible anion redox in 3d-transition-metal Li rich oxides by introducing surface defects, Nano Energy, 71(2020), art. No. 104644.

[9]

Wang LP, Chen G, Shen QX, Li GM, Guan SY, Li B. Direct electrodeposition of ionic liquid-based template-free SnCo alloy nanowires as an anode for Li-ion batteries. Int. J. Miner. Metall. Mater., 2018, 25(9): 1027.

[10]

Fujita T, Chen H, Wang KT, He CL, Wang YB, Dodbiba G, Wei YZ. Reduction, reuse and recycle of spent Li-ion batteries for automobiles: A review. Int. J. Miner. Metall. Mater., 2021, 28(2): 179.

[11]

House RA, Maitra U, Pérez-Osorio MA, Lozano JG, Jin LY, Somerville JW, Duda LC, Nag A, Walters A, Zhou KJ, Roberts MR, Bruce PG. Superstructure control of first-cycle voltage hysteresis in oxygen-redox cathodes. Nature, 2020, 577(7791): 502.

[12]

W. Zhang, Y.G. Sun, H.Q. Deng, J.M. Ma, Y. Zeng, Z.Q. Zhu, Z.S. Lv, H.R. Xia, X. Ge, S.K. Cao, Y. Xiao, S.B. Xi, Y.H. Du, A.M. Cao, and X.D. Chen, Dielectric polarization in inverse spinel-structured Mg2TiO4 coating to suppress oxygen evolution of Li-rich cathode materials, Adv. Mater., 32(2020), No. 19, art. No. 2000496.

[13]

Zhao ZK, Xie HL, Wen ZY, Liu L, Wu BR, Chen S, Mu DB, Xie CX. Tuning Li3PO4 modification on the electrochemical performance of nickel-rich LiNi0.6Co0.2Mn0.2O2. Int. J. Miner. Metall. Mater., 2021, 28(9): 1488.

[14]

Tang LB, Liu Y, Wei HX, Yan C, He ZJ, Li YJ, Zheng JC. Boosting cell performance of LiNi0.8Co0.1Mn0.1O2 cathode material via structure design. J. Energy Chem., 2021, 55, 114.

[15]

J.C. Zhang, F.Y. Cheng, S.L. Chou, J.L. Wang, L. Gu, H. Wang, H. Yoshikawa, Y. Lu, and J. Chen, Tuning oxygen redox chemistry in Li-rich Mn-based layered oxide cathodes by modulating cation arrangement, Adv. Mater., 31(2019), No. 42, art. No. 1901808.

[16]

Su YF, Yuan FY, Chen L, Lu Y, Dong JY, Fang YY, Chen S, Wu F. Enhanced high-temperature performance of Li-rich layered oxide via surface heterophase coating. J. Energy Chem., 2020, 51, 39.

[17]

Fan J, Li G, Li B, Zhang D, Chen D, Li L. Reconstructing the surface structure of Li-rich cathodes for high-energy lithium-ion batteries. ACS Appl. Mater. Interfaces, 2019, 11(22): 19950.

[18]

Z.H. Sun, L.Q. Xu, C.Q. Dong, H.T. Zhang, M.T. Zhang, Y.F. Ma, Y.Y. Liu, Z.J. Li, Y. Zhou, Y. Han, and Y.S. Chen, A facile gaseous sulfur treatment strategy for Li-rich and Ni-rich cathode materials with high cycling and rate performance, Nano Energy, 63(2019), art. No. 103887.

[19]

B. Qiu, M.H. Zhang, L.J. Wu, J. Wang, Y.G. Xia, D.N. Qian, H.D. Liu, S. Hy, Y. Chen, K. An, Y.M. Zhu, Z.P. Liu, and Y.S. Meng, Gas—solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries, Nat. Commun., 7(2016), art. No. 12108.

[20]

Xie DZ, Zhou WS, Lin KS, Hu C, Zheng PM, Hou XH, Lam KH. Doping effect of fluoride anion on microstructural and electrochemical properties of lithium-rich cathode materials. Mater. Lett., 2019, 253, 82.

[21]

R.P. Qing, J.L. Shi, D.D. Xiao, X.D. Zhang, Y.X. Yin, Y.B. Zhai, L. Gu, and Y.G. Guo, Enhancing the kinetics of Li-rich cathode materials through the pinning effects of gradient surface Na+ doping, Adv. Energy Mater., 6(2016), No. 6, art. No. 1501914.

[22]

Y.C. Liu, J. Wang, J.W. Wu, Z.Y. Ding, P.H. Yao, S.L. Zhang, and Y.N. Chen, 3D cube-maze-like Li-rich layered cathodes assembled from 2D porous nanosheets for enhanced cycle stability and rate capability of lithium-ion batteries, Adv. Energy Mater., 10(2020), No. 5, art. No. 1903139.

[23]

J.X. Liu, J.Q. Wang, Y.X. Ni, Y.D. Zhang, J. Luo, F.Y. Cheng, and J. Chen, Spinel/lithium-rich manganese oxide hybrid nanofibers as cathode materials for rechargeable lithium-ion batteries, Small Methods, 3(2019), No. 12, art. No. 1900350.

[24]

Y. Chen, Y.B. Niu, C. Lin, J.X. Li, Y.B. Lin, G.G. Xu, R.E. Palmer, and Z.G. Huang, Insight into the intrinsic mechanism of improving electrochemical performance via constructing the preferred crystal orientation in lithium cobalt dioxide, Chem. Eng. J., 399(2020), art. No. 125708.

[25]

X.K. Ju, X. Hou, Z.Q. Liu, H.F. Zheng, H. Huang, B.H. Qu, T.H. Wang, Q.H. Li, and J. Li, The full gradient design in Li-rich cathode for high performance lithium ion batteries with reduced voltage decay, J. Power Sources, 437(2019), art. No. 226902.

[26]

Xu M, Fei L, Zhang W, Li T, Lu W, Zhang N, Lai Y, Zhang Z, Fang J, Zhang K, Li J, Huang H. Tailoring anisotropic Li-ion transport tunnels on orthogonally arranged Li-rich layered oxide nanoplates toward high-performance Li-ion batteries. Nano Lett., 2017, 17(3): 1670.

[27]

X. Li, Y. Qiao, S.H. Guo, K.Z. Jiang, M. Ishida, and H.S. Zhou, A new type of Li-rich rock-salt oxide Li2Ni1/3Ru2/3O3 with reversible anionic redox chemistry, Adv. Mater., 31(2019), No. 11, art. No. 1807825.

[28]

Shen CH, Wang Q, Fu F, Huang L, Lin Z, Shen SY, Su H, Zheng XM, Xu BB, Li JT, Sun SG. Facile synthesis of the Li-rich layered oxide Li1.23Ni0.09Co0.12Mn0.56O2 with superior lithium storage performance and new insights into structural transformation of the layered oxide material during charge-discharge cycle: In situ XRD characterization. ACS Appl. Mater. Interfaces, 2014, 6(8): 5516.

[29]

Hou PY, Xu L, Song JS, Song DW, Shi XX, Wang XQ, Zhang LQ. A high energy density Li-rich positive-electrode material with superior performances via a dual chelating agent co-precipitation route. J. Mater. Chem. A, 2015, 3(18): 9427.

[30]

C.X. Zhang, Y.Z. Feng, B. Wei, C.P. Liang, L.J. Zhou, D.G. Ivey, P. Wang, and W.F. Wei, Heteroepitaxial oxygen-buffering interface enables a highly stable cobalt-free Li-rich layered oxide cathode, Nano Energy, 75(2020), art. No. 104995.

[31]

W.H. Ryu, D.H. Kim, S.H. Kang, and H.S. Kwon, Electrochemical properties of nanosized Li-rich layered oxide as positive electrode materials for Li-Ion batteries, RSC Adv., 3(2013), No. 22, art. No. 8527.

[32]

Liu PF, Zhang H, He W, Xiong TF, Cheng Y, Xie QS, Ma YT, Zheng HF, Wang LS, Zhu ZZ, Peng Y, Mai LQ, Peng DL. Lithium deficiencies engineering in Li-rich layered oxide Li1.098Mn0.533Ni0.113Co0.138O2 for high-stability cathode. J. Am. Chem. Soc., 2019, 141(27): 10876.

[33]

Zhu W, Tai ZG, Shu CY, Chong SK, Guo SW, Ji LJ, Chen YZ, Liu YN. The superior electrochemical performance of a Li-rich layered cathode material with Li-rich spinel Li4Mn5O12 and MgF2 double surface modifications. J. Mater. Chem. A, 2020, 8(16): 7991.

[34]

Baddour-Hadjean R, Pereira-Ramos JP. Raman microspectrometry applied to the study of electrode materials for lithium batteries. Chem. Rev., 2010, 110(3): 1278.

[35]

Guo HC, Wei Z, Jia K, Qiu B, Yin C, Meng FQ, Zhang QH, Gu L, Han SJ, Liu Y, Zhao H, Jiang W, Cui HF, Xia YG, Liu ZP. Abundant nanoscale defects to eliminate voltage decay in Li-rich cathode materials. Energy Storage Mater., 2019, 16, 220.

[36]

D.Y.W. Yu and K. Yanagida, Structural analysis of Li2MnO3 and related Li-Mn-O materials, J. Electrochem. Soc., 158(2011), No. 9, art. No. A1015.

[37]

X.D. Zhang, J.L. Shi, J.Y. Liang, Y.X. Yin, J.N. Zhang, X.Q. Yu, and Y.G. Guo, Suppressing surface lattice oxygen release of Li-rich cathode materials via heterostructured spinel Li4Mn5O12 coating, Adv. Mater., 30(2018), No. 29, art. No. 1801751.

[38]

He JY, Ma HY, Zhang HZ, Song DW, Shi XX, Deng QB, Li CL, Jiao LF, Zhang LQ. Promoting the electrochemical performance of Li-rich layered Li1.2(Ni1/6Co1/6Mn4/6)0.8O2 with the in situ transformed allogenic spinel phase. ACS Sustainable Chem. Eng., 2020, 8(5): 2215.

[39]

W. Jin, S. Myeong, J. Hwang, H. Jang, J. Sung, Y. Yoo, M.G. Kim, and J. Cho, Unraveling the rapid redox behavior of Li-excess 3d-transition metal oxides for high rate capability, Adv. Energy Mater., 10(2020), No. 17, art. No. 1904092.

[40]

Y. Liu, Z.Y. Wang, H.X. Zhuo, S.G. Lu, and W.D. Zhuang, Heating-temperature-dependent electrochemical-performance-enhanced surface structural evolution during chemical treatment of Li-rich layered material by sodium thiosulfate, J. Power Sources, 455(2020), art. No. 227795.

[41]

Yu Y, Yang Z, Zhong JJ, Liu YY, Li JL, Wang XD, Kang FY. A simple dual-ion doping method for stabilizing Lirich materials and suppressing voltage decay. ACS Appl. Mater. Interfaces, 2020, 12(12): 13996.

[42]

Shi SJ, Zhang SS, Wu ZJ, Wang T, Zong JB, Zhao MX, Yang G. Full microwave synthesis of advanced Li-rich manganese based cathode material for lithium ion batteries. J. Power Sources, 2017, 337, 82.

[43]

Gu ZY, Guo JZ, Zhao XX, Wang XT, Xie D, Sun ZH, Zhao CD, Liang HJ, Li WH, Wu XL. High-ionicity fluorophosphate lattice via aliovalent substitution as advanced cathode materials in sodium-ion batteries. InfoMat, 2021, 3(6): 694.

[44]

Li WH, Liang HJ, Hou XK, Gu ZY, Zhao XX, Guo JZ, Yang X, Wu XL. Feasible engineering of cathode electrolyte interphase enables the profoundly improved electrochemical properties in dual-ion battery. J. Energy Chem., 2020, 50, 416.

[45]

Wang HY, Cheng X, Li XF, Pan JM, Hu JH. Coupling effect of the conductivities of Li ions and electrons by introducing LLTO@C fibers in the LiNi0.8Co0.15Al0.05O2 cathode. Int. J. Miner. Metall. Mater., 2021, 28(2): 305.

AI Summary AI Mindmap
PDF

223

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/