Self-assembled TiO2 hole-blocking layers for efficient perovskite solar cells

Zhongbao Que , Liang Chu , Shuaibo Zhai , Yifei Feng , Chen Chen , Wei Liu , Ruiyuan Hu , Jing Hu , Xing’ao Li

International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (6) : 1280 -1285.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (6) : 1280 -1285. DOI: 10.1007/s12613-021-2361-8
Article

Self-assembled TiO2 hole-blocking layers for efficient perovskite solar cells

Author information +
History +
PDF

Abstract

The self-assembly process for compatible functional layers of devices is a simple, feasible, and energy-saving strategy. In mesoporous perovskite solar cells (PSCs), compact and scaffold TiO2 films generally function as the hole-blocking and electron-transporting layers, respectively. However, both of these layers are usually generated through a high-temperature annealing process. Here, we deposited TiO2 compact films through a room-temperature self-assembly process as effective hole-blocking layers for PSCs. The thickness of TiO2 compact films can be easily controlled by the deposition time. Through the optimization of TiO2 compact films (80 nm), the power conversion efficiency (PCE) of mesoporous PSCs without and with hole conductor layers increases up to 10.66% and 17.95%, respectively. Notably, an all-low-temperature planar PSC with the self-assembled TiO2 layer exhibits a PCE of 16.41%.

Keywords

perovskite solar cells / titanium dioxide / self-assembly / power conversion efficiency

Cite this article

Download citation ▾
Zhongbao Que, Liang Chu, Shuaibo Zhai, Yifei Feng, Chen Chen, Wei Liu, Ruiyuan Hu, Jing Hu, Xing’ao Li. Self-assembled TiO2 hole-blocking layers for efficient perovskite solar cells. International Journal of Minerals, Metallurgy, and Materials, 2022, 29(6): 1280-1285 DOI:10.1007/s12613-021-2361-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc., 2009, 131(17): 6050.

[2]

J. Semicond., 2021, 42(9)

[3]

Chu L. Pseudohalide anion engineering for highly efficient and stable perovskite solar cells. Matter, 2021, 4(6): 1762.

[4]

Yang J, Chu L, Hu RY, Liu W, Liu NJ, Ma YH, Ahmad W, Li XA. Work function engineering to enhance open-circuit voltage in planar perovskite solar cells by g-C3N4 nanosheets. Nano Res., 2021, 14(7): 2139.

[5]

Zhang XC. Strain control for halide perovskites. Matter, 2020, 2(2): 294.

[6]

National Renewable Energy Laboratory, Best Research Cell Efficiency [2020-09-19]. https://www.nrel.gov/pv/cellefficiency.html.

[7]

Adv. Energy Mater., 2018, 8(8)

[8]

Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 2012, 338(6107): 643.

[9]

Xing GC, Mathews N, Sun SY, Lim SS, Lam YM, Grätzel M, Mhaisalkar S, Sum TC. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science, 2013, 342(6156): 344.

[10]

Stranks SD, Eperon GE, Grancini G, Menelaou C, Alcocer MJP, Leijtens T, Herz LM, Petrozza A, Snaith HJ. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 2013, 342(6156): 341.

[11]

Fu PF, Hu S, Tang J, Xiao ZW. Material exploration via designing spatial arrangement of octahedral units: A case study of lead halide perovskites. Front. Optoelectron., 2021, 14(2): 252.

[12]

Zheng JH, Zhu LX, Shen ZT, Li FM, Ling LY, Li HL, Chen C. Effects of the incorporation amounts of CdS and Cd(SCN2H4)2Cl2 on the performance of perovskite solar cells. Int. J. Miner. Metall. Mater., 2022, 29(2): 283.

[13]

Y. Xie, J. Yin, J. Zheng, Y. Fan, J. Wu, and X. Zhang, Facile RbBr interface modification improves perovskite solar cell efficiency, Mater. Today Chem., 14(2019), art. No. 100179.

[14]

Nano Micro Lett., 2020, 12(1)

[15]

Appl. Phys. Lett., 2015, 106(12)

[16]

Burschka J, Pellet N, Moon SJ, Humphry-Baker R, Gao P, Nazeeruddin MK, Grätzel M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013, 499(7458): 316.

[17]

T.S. Su, T.Y. Hsieh, C.Y. Hong, and T.C. Wei, Electrodeposited ultrathin TiO2 blocking layers for efficient perovskite solar cells, Sci. Rep., 5(2015), art. No. 16098.

[18]

Ke WJ, Fang GJ, Wang J, Qin PL, Tao H, Lei HW, Liu Q, Dai X, Zhao XZ. Perovskite solar cell with an efficient TiO2 compact film. ACS Appl. Mater. Interfaces, 2014, 6(18): 15959.

[19]

Adv. Energy Mater., 2015, 5(8)

[20]

Aharon S, Gamliel S, El Cohen B, Etgar L. Depletion region effect of highly efficient hole conductor free CH3NH3PbI3 perovskite solar cells. Phys. Chem. Chem. Phys., 2014, 16(22): 10512.

[21]

Domanski K, Correa-Baena JP, Mine N, Nazeeruddin MK, Abate A, Saliba M, Tress W, Hagfeldt A, Grätzel M. Not all that glitters is gold: Metal-migration-induced degradation in perovskite solar cells. ACS Nano, 2016, 10(6): 6306.

[22]

Mei AY, Li X, Liu LF, Ku ZL, Liu TF, Rong YG, Xu M, Hu M, Chen JZ, Yang Y, Grätzel M, Han HW. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science, 2014, 345(6194): 295.

[23]

Hu H, Dong BH, Hu HT, Chen FX, Kong MQ, Zhang QP, Luo TY, Zhao L, Guo ZG, Li J, Xu ZX, Wang SM, Eder D, Wan L. Atomic layer deposition of TiO2 for a high-efficiency hole-blocking layer in hole-conductor-free perovskite solar cells processed in ambient air. ACS Appl. Mater. Interfaces, 2016, 8(28): 17999.

[24]

Chu L, Liu W, Qin ZF, Zhang R, Hu RY, Yang J, Yang JP, Li XA. Boosting efficiency of hole conductor-free perovskite solar cells by incorporating p-type NiO nanoparticles into carbon electrodes. Sol. Energy Mater. Sol. Cells, 2018, 178, 164.

[25]

Du JY, Zhang MQ, Tian JJ. Controlled crystal orientation of two-dimensional Ruddlesden-Popper halide perovskite films for solar cells. Int. J. Miner. Metall. Mater., 2022, 29(1): 49.

[26]

Zhang HY, Li R, Liu WW, Zhang M, Guo M. Research progress in lead-less or lead-free three-dimensional perovskite absorber materials for solar cells. Int. J. Miner. Metall. Mater., 2019, 26(4): 387.

[27]

Lee JH, Leu IC, Hsu MC, Chung YW, Hon MH. Fabrication of aligned TiO2 one-dimensional nanostructured arrays using a one-step templating solution approach. J. Phys. Chem. B, 2005, 109(27): 13056.

[28]

Xu CK, Wu JM, Desai UV, Gao D. High-efficiency solid-state dye-sensitized solar cells based on TiO2-coated ZnO nanowire arrays. Nano Lett., 2012, 12(5): 2420.

[29]

Erdem B, Hunsicker RA, Simmons GW, Sudol ED, Dimonie VL, El-Aasser MS. XPS and FTIR surface characterization of TiO2 particles used in polymer encapsulation. Langmuir, 2001, 17(9): 2664.

[30]

Orendorz A, Wüsten J, Ziegler C, Gnaser H. Photoelectron spectroscopy of nanocrystalline anatase TiO2 films. Appl. Surf. Sci., 2005, 252(1): 85.

[31]

McCafferty E, Wightman JP. Determination of the concentration of surface hydroxyl groups on metal oxide films by a quantitative XPS method. Surf. Interface Anal., 1998, 26(8): 549.

[32]

Cao K, Zuo ZX, Cui J, Shen Y, Moehl T, Zakeeruddin SM, Grätzel M, Wang MK. Efficient screen printed perovskite solar cells based on mesoscopic TiO2/Al2O3/NiO/carbon architecture. Nano Energy, 2015, 17, 171.

[33]

N.J. Liu, L. Chu, W. Ahmad, R.Y. Hu, R.F. Luan, W. Liu, J. Yang, Y.H. Ma, and X.A. Li, Low-pressure treatment of CuSCN hole transport layers for enhanced carbon-based perovskite solar cells, J. Power Sources, 499(2021), art. No. 229970.

[34]

Appl. Phys. Express, 2014, 7(5)

[35]

Wang PJ, Shao ZP, Ulfa M, Pauporté T. Insights into the hole blocking layer effect on the perovskite solar cell performance and impedance response. J. Phys. Chem. C, 2017, 121(17): 9131.

AI Summary AI Mindmap
PDF

113

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/