Review of the fabrication and application of porous materials from silicon-rich industrial solid waste

Chao Miao , Lixing Liang , Fan Zhang , Shumei Chen , Kaixuan Shang , Jinlong Jiang , Yi Zhang , Jing Ouyang

International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (3) : 424 -438.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (3) : 424 -438. DOI: 10.1007/s12613-021-2360-9
Invited Review

Review of the fabrication and application of porous materials from silicon-rich industrial solid waste

Author information +
History +
PDF

Abstract

Porous materials have promise as sound insulation, heat barrier, vibration attenuation, and catalysts. Most industrial solid wastes, such as tailings, coal gangue, and fly ash are rich in silicon. Additionally, a high silicon content waste is a potential raw material for the synthesis of silicon-based, multi-porous materials such as zeolites, mesoporous silica, glass—ceramics, and geopolymer foams. Representative silicon-rich industrial solid wastes (SRISWs) are the focus of this mini review of the processing and application of porous silicon materials with respect to the physical and chemical properties of the SRISW. The transformation methods of preparing porous materials from SRISWs are summarized, and their research status in micro-, meso-, and macro-scale porous materials are described. Possible problems in the application of SRISWs and in the preparation of functional porous materials are analyzed, and their development prospects are discussed. This review should provide a typical reference for the recycling and use of industrial solid wastes to develop sustainable “green materials.”

Keywords

silicon-rich industrial solid waste / porous materials / physicochemical properties / material utilization of solid wastes

Cite this article

Download citation ▾
Chao Miao, Lixing Liang, Fan Zhang, Shumei Chen, Kaixuan Shang, Jinlong Jiang, Yi Zhang, Jing Ouyang. Review of the fabrication and application of porous materials from silicon-rich industrial solid waste. International Journal of Minerals, Metallurgy, and Materials, 2022, 29(3): 424-438 DOI:10.1007/s12613-021-2360-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lu W. Waste Recycling System Material Metabolism Analysis Model and Its Application, 2010, Beijing, Tsinghua University, 2 [Dissertation]

[2]

Wang XL, Li QY, Chen SC, Yue GB. Application research and prospect of industrial soild waste in new building materials. Bull. Chin. Ceram. Soc., 2019, 38(11): 3456

[3]

Z.G. Wang, J. Lv, F. Gu, J. Yang, and J.F. Guo, Environmental and economic performance of an integrated municipal solid waste treatment: A Chinese case study, Sci. Total. Environ., 709(2020), art. No. 136096.

[4]

Lebreton L, Andrady A. Future scenarios of global plastic waste generation and disposal. Palgrave Commun., 2019, 5(1): 1.

[5]

Awasthi AK, Li JH, Koh L, Ogunseitan OA. Circular economy and electronic waste. Nat. Electron., 2019, 2(3): 86.

[6]

Werther J, Saenger M, Hartge EU, Ogada T, Siagi Z. Combustion of agricultural residues. Prog. Energy Combust. Sci., 2000, 26(1): 1.

[7]

Milani PA, Consonni JL, Labuto G, Carrilho ENVM. Agricultural solid waste for sorption of metal ions, part II: Competitive assessment in multielemental solution and lake water. Environ. Sci. Pollut. Res., 2018, 25(36): 35906.

[8]

Wen XF, Luo QM, Hu HL, Wang N, Chen Y, Jin J, Hao YL, Xu GY, Li FM, Fang WJ. Comparison research on waste classification between China and the EU, Japan, and the USA. J. Mater. Cycles Waste Manage., 2014, 16(2): 321.

[9]

W. Ferdous, A. Manalo, R. Siddique, P. Mendis, Z.G. Yan, H.S. Wong, W. Lokuge, T. Aravinthan, and P. Schubel, Recycling of landfill wastes (tyres, plastics and glass) in construction—A review on global waste generation, performance, application and future opportunities, Resour. Conserv. Recycl., 173(2021), art. No. 105745.

[10]

Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T. Reporting physisorption data for gas/solid systems. Pure Appl. Chem., 1985, 57(4): 603.

[11]

Adil K, Belmabkhout Y, Pillai RS, Cadiau A, Bhatt PM, Assen AH, Maurin G, Eddaoudi M. Gas/vapour separation using ultra-microporous metal-organic frameworks: Insights into the structure/separation relationship. Chem. Soc. Rev., 2017, 46(11): 3402.

[12]

Li Y, Fu ZY, Su BL. Hierarchically structured porous materials for energy conversion and storage. Adv. Funct. Mater., 2012, 22(22): 4634.

[13]

Ng EP, Chateigner D, Bein T, Valtchev V, Mintova S. Capturing ultrasmall EMT zeolite from template-free systems. Science, 2012, 335(6064): 70.

[14]

Ren N, Bronic J, Subotić B, Lv XC, Yang ZJ, Tang Y. Controllable and SDA-free synthesis of sub-micrometer sized zeolite ZSM-5. Part 1: Influence of alkalinity on the structural, particulate and chemical properties of the products. Microporous Mesoporous Mater., 2011, 139(1–3): 197.

[15]

Y.L. Tan, B.H. Hameed, and A.Z. Abdullah, Deoxygenation of pyrolysis vapour derived from durian shell using catalysts prepared from industrial wastes rich in Ca, Fe, Si and Al, Sci. Total. Environ., 703(2020), art. No. 134902.

[16]

Shen XJ, Qiu GB, Yue CS, Guo M, Zhang M. Multiple copper adsorption and regeneration by zeolite 4A synthesized from bauxite tailings. Environ. Sci. Pollut. Res., 2017, 24(27): 21829.

[17]

Li XB, Ye JJ, Liu ZH, Qiu YQ, Li LJ, Mao S, Wang XC, Zhang Q. Microwave digestion and alkali fusion assisted hydrothermal synthesis of zeolite from coal fly ash for enhanced adsorption of Cd(II) in aqueous solution. J. Central South Univ., 2018, 25(1): 9.

[18]

M. Vidaurre-Arbizu, S. Pérez-Bou, A. Zuazua-Ros, and C. Martín-Gómez, From the leather industry to building sector: Exploration of potential applications of discarded solid wastes, J. Clean. Prod., 291(2021), art. No. 125960.

[19]

J.S. Zhao, K. Ni, Y.P. Su, and Y.X. Shi, An evaluation of iron ore tailings characteristics and iron ore tailings concrete properties, Constr. Build. Mater., 286(2021), art. No. 122968.

[20]

Y.L. Zhang and T.C. Ling, Reactivity activation of waste coal gangue and its impact on the properties of cement-based materials — A review, Constr. Build. Mater., 234(2020), art. No. 117424.

[21]

M.F. Wang and X.M. Liu, Applications of red mud as an environmental remediation material: A review, J. Hazard. Mater., 408(2021), art. No. 124420.

[22]

Majchrzak-Kuceba I, Nowak W. Characterization of MCM-41 mesoporous materials derived from Polish fly ashes. Int. J. Miner. Process., 2011, 101(1–4): 100.

[23]

Özbay E, Erdemir M, Durmuş HI. Utilization and efficiency of ground granulated blast furnace slag on concrete properties — A review. Constr. Build. Mater., 2016, 105, 423.

[24]

Zimmer A, Bragança SR. A review of waste glass as a raw material for whitewares. J. Environ. Manage., 2019, 244, 161.

[25]

Sayehi M, Tounsi H, Garbarino G, Riani P, Busca G. Reutilization of silicon- and aluminum- containing wastes in the perspective of the preparation of SiO2-Al2O3 based porous materials for adsorbents and catalysts. Waste Manage., 2020, 103, 146.

[26]

Das SK, Kumar S, Ramachandrarao P. Exploitation of iron ore tailing for the development of ceramic tiles. Waste Manage., 2000, 20(8): 725.

[27]

Vassilev SV, Vassileva CG. A new approach for the classification of coal fly ashes based on their origin, composition, properties, and behaviour. Fuel, 2007, 86(10–11): 1490.

[28]

Yan KZ. Phase Transformation Mechanism of Aluminosilicate Minerals in Coal Wastes Calcined with Sodium Carbonate, 2018, Taiyuan, Shanxi University, 5 [Dissertation]

[29]

Sushil S, Batra VS. Catalytic applications of red mud, an aluminium industry waste: A review. Appl. Catal. B: Environ., 2008, 81(1–2): 64.

[30]

Ren J, Chen J, Guo W, Yang B, Qin XP, Du P. Physical, chemical, and surface charge properties of bauxite residue derived from a combined process. J. Cent. South Univ., 2019, 26(2): 373.

[31]

Burlakovs J, Jani Y, Kriipsalu M, Vincevica-Gaile Z, Kaczala F, Celma G, Ozola R, Rozina L, Rudovica V, Hogland M, Viksna A, Pehme KM, Hogland W, Klavins M. On the way to ‘zero waste’ management: Recovery potential of elements, including rare earth elements, from fine fraction of waste. J. Clean. Prod., 2018, 186, 81.

[32]

Yan F, Jiang JG, Tian SC, Liu ZW, Shi J, Li KM, Chen XJ, Xu YW. A green and facile synthesis of ordered mesoporous nanosilica using coal fly ash. ACS Sustainable Chem. Eng., 2016, 4(9): 4654.

[33]

Xiao J, Zhang LY, Yuan J, Yao Z, Tang L, Wang ZA, Zhang ZH. Co-utilization of spent pot-lining and coal gangue by hydrothermal acid-leaching method to prepare silicon carbide powder. J. Clean. Prod., 2018, 204, 848.

[34]

Y, Li J, Ye HP, Du DY, Li JX, Sun P, Ma MY, Wen JX. Bioleaching behaviors of silicon and metals in electrolytic manganese residue using silicate bacteria. J. Clean. Prod., 2019, 228, 901.

[35]

M. Hecini, M. Tablaoui, S. Aoudj, B. Palahouane, O. Bouchelaghem, S. Beddek, and N. Drouiche, Recovery of silicon carbide and synthesis of silica materials from silicon ingot cutting fluid waste, Sep. Purif. Technol., 254(2021), art. No. 117556.

[36]

C. Lu, H.M. Yang, J. Wang, Q. Tan, and L.J. Fu, Utilization of iron tailings to prepare high-surface area mesoporous silica materials, Sci. Total. Environ., 736(2020), art. No. 139483.

[37]

Qiang ZQ, Li R, Yang ZQ, Guo M, Cheng FQ, Zhang M. Zeolite X adsorbent with high stability synthesized from bauxite tailings for cyclic adsorption of CO2. Energ. Fuel., 2019, 33(7): 6641.

[38]

Lei PC, Shen XJ, Li Y, Guo M, Zhang M. An improved implementable process for the synthesis of zeolite 4A from bauxite tailings and its Cr3+ removal capacity. Int. J. Miner. Metall. Mater., 2016, 23(7): 850.

[39]

Zong YB, Zhao CY, Chen WH, Liu ZB, Cang DQ. Preparation of hydro-sodalite from fly ash using a hydrothermal method with a submolten salt system and study of the phase transition process. Int. J. Miner. Metall. Mater., 2020, 27(1): 55.

[40]

Liang B, Zhang MX, Li H, Zhao M, Xu PF, Deng LB. Preparation of ceramic foams from ceramic tile polishing waste and fly ash without added foaming agent. Ceram. Int., 2021, 47(16): 23338.

[41]

J.W. Guo, X.M. Liu, J.M. Yu, C.F. Xu, Y.F. Wu, D.A. Pan, and R.A. Senthil, An overview of the comprehensive utilization of silicon-based solid waste related to PV industry, Resour. Conserv. Recycl., 169(2021), art. No. 105450.

[42]

A. Gedik, An exploration into the utilization of recycled waste glass as a surrogate powder to crushed stone dust in asphalt pavement construction, Constr. Build. Mater., 300(2021), art. No. 123980.

[43]

Qiu BB, Duan F. Synthesis of industrial solid wastes/biochar composites and their use for adsorption of phosphate: From surface properties to sorption mechanism. Colloids Surf. A: Physicochem. Eng. Aspects, 2019, 571, 86.

[44]

L. Han, J.X. Wang, Z. Liu, Y.B. Zhang, Y.X. Jin, J.X. Li, and D.M. Wang, Synthesis of fly ash-based self-supported zeolites foam geopolymer via saturated steam treatment, J. Hazard. Mater., 393(2020), art. No. 122468.

[45]

Li RF, Zhou Y, Duan XL. A novel composite phase change material with paraffin wax in tailings porous ceramics. Appl. Therm. Eng., 2019, 151, 115.

[46]

Cao JW, Lu JS, Jiang LX, Wang Z. Sinterability, microstructure and compressive strength of porous glass-ceramics from metallurgical silicon slag and waste glass. Ceram. Int., 2016, 42(8): 10079.

[47]

Slater AG, Cooper AI. Function-led design of new porous materials. Science, 2015, 348(6238): aaa8075.

[48]

C.N. Qin, M.Z. Yao, Y. Liu, Y.J. Yang, Y.F. Zong, and H. Zhao, MFC/NFC-based foam/aerogel for production of porous materials: Preparation, properties and applications, Materials, 13(2020), No. 23, art. No. 5568.

[49]

I.G. Clayson, D. Hewitt, M. Hutereau, T. Pope, and B. Slater, High throughput methods in the synthesis, characterization, and optimization of porous materials, Adv. Mater., 32(2020), No. 44, art. No. 2002780.

[50]

Olgun A, Atar N, Wang SB. Batch and column studies of phosphate and nitrate adsorption on waste solids containing boron impurity. Chem. Eng. J., 2013, 222, 108.

[51]

S. Pourrahim, A. Salem, S. Salem, and R. Tavangar, Application of solid waste of ductile cast iron industry for treatment of wastewater contaminated by reactive blue dye via appropriate nano-porous magnesium oxide, Environ. Pollut., 256(2020), art. No. 113454.

[52]

Mella B, Puchana-Rosero MJ, Costa DES, Gutterres M. Utilization of tannery solid waste as an alternative biosorbent for acid dyes in wastewater treatment. J. Mol. Liq., 2017, 242, 137.

[53]

J.Q. Liu, J. Goss, T. Calverley, Y.J. Liu, C. Broomall, J. Kang, R. Golombeski, D. Anaya, B. Moe, K. Mabe, G. Watson, and A. Wetzel, Carbon molecular sieve fiber with 3.4–4.9 Angstrom effective micropores for propylene/propane and other gas separations, Microporous Mesoporous Mater., 305(2020), art. No. 110341.

[54]

J. Hou, H.C. Zhang, G.P. Simon, and H.T. Wang, Polycrystalline advanced microporous framework membranes for efficient separation of small molecules and ions, Adv. Mater., 32(2020), No. 18, art. No. 1902009.

[55]

A. Khaleque, M.M. Alam, M. Hoque, S. Mondal, J.B. Haider, B.T. Xu, M.A.H. Johir, A.K. Karmakar, J.L. Zhou, M.B. Ahmed, and M.A. Moni, Zeolite synthesis from low-cost materials and environmental applications: A review, Environ. Adv., 2(2020), art. No. 100019.

[56]

D.X. Ouyang, Y.T. Zhuo, L. Hu, Q. Zeng, Y.H. Hu, and Z.G. He, Research on the adsorption behavior of heavy metal ions by porous material prepared with silicate tailings, Minerals, 9(2019), No. 5, art. No. 291.

[57]

G.Y. Dong, G.Y. Tian, L.L. Gong, Q.G. Tang, M.Y. Li, J.P. Meng, and J.S. Liang, Mesoporous zinc silicate composites derived from iron ore tailings for highly efficient dye removal: Structure and morphology evolution, Micropor. Mesopor. Mater., 305(2020), art. No. 110352.

[58]

Yang G, Deng YX, Wang J. Non-hydrothermal synthesis and characterization of MCM-41 mesoporous materials from iron ore tailing. Ceram. Int., 2014, 40(5): 7401.

[59]

Sari Yilmaz M, Piskin S. Evaluation of novel synthesis of ordered SBA-15 mesoporous silica from gold mine tailings slurry by experimental design. J. Taiwan Inst. Chem. Eng., 2015, 46, 176.

[60]

Kim S, Han Y, Park J, Park J. Adsorption characteristics of mesoporous silica SBA-15 synthesized from mine tailing. Int. J. Miner. Process., 2015, 140, 88.

[61]

S.Z. Salleh, A. Awang Kechik, A.H. Yusoff, M.A.A. Taib, M. Mohamad Nor, M. Mohamad, T.G. Tan, A. Ali, M.N. Masri, J.J. Mohamed, S.K. Zakaria, J.G. Boon, F. Budiman, and P.T. Teo, Recycling food, agricultural, and industrial wastes as pore-forming agents for sustainable porous ceramic production: A review, J. Clean. Prod., 306(2021), art. No. 127264.

[62]

Yaras A, Sutcu M, Gencel O, Erdogmus E. Use of carbonation sludge in clay based building materials processing for eco-friendly, lightweight and thermal insulation. Constr. Build. Mater., 2019, 224, 57.

[63]

W.X. Shang, Z.W. Peng, Y.W. Huang, F.Q. Gu, J. Zhang, H.M. Tang, L. Yang, W.G. Tian, M.J. Rao, G.H. Li, and T. Jiang, Production of glass-ceramics from metallurgical slags, J. Clean. Prod., 317(2021), art. No. 128220.

[64]

P.R. Monich, A.R. Romero, D. Desideri, and E. Bernardo, Waste-derived glass-ceramics fired in nitrogen: Stabilization and functionalization, Constr. Build. Mater., 232(2020), art. No. 117265.

[65]

Chinnam RK, Francis AA, Will J, Bernardo E, Boccaccini AR. Review. Functional glasses and glass-ceramics derived from iron rich waste and combination of industrial residues. J. Non-Cryst. Solids, 2013, 365, 63.

[66]

C.P. Xi, J.M. Zhou, F. Zheng, J.M. Gao, P.F. Hu, Y. Li, Q. Zhen, S. Bashir, and J.L. Liu, Conversion of extracted titanium tailing and waste glass to value-added porous glass ceramic with improved performances, J. Environ. Manage., 261(2020), art. No. 110197.

[67]

Zheng WH, Cao H, Zhong JB, Qian SY, Peng ZG, Shen CH. CaO-MgO-Al2O3-SiO2 glass-ceramics from lithium porcelain clay tailings for new building materials. J. Non-Cryst. Solids, 2015, 409, 27.

[68]

Ye CQ, He F, Shu H, Qi H, Zhang QP, Song PY, Xie JL. Preparation and properties of sintered glass-ceramics containing Au-Cu tailing waste. Mater. Des., 2015, 86, 782.

[69]

W.M. Zheng, H.J. Sun, T.J. Peng, and L. Zeng, Novel preparation of foamed glass-ceramics from asbestos tailings and waste glass by self-expansion in high temperature, J. Non-Cryst. Solids, 529(2020), art. No. 119767.

[70]

Y.H. Ren, Q. Ren, X.L. Wu, J.L. Zheng, and O. Hai, Recycling of solid wastes ferrochromium slag for preparation of ecofriendly high-strength spinel-corundum ceramics, Mater. Chem. Phys., 239(2020), art. No. 122060.

[71]

L. Li, W.F. Liu, Q.X. You, M.C. Chen, and Q. Zeng, Waste ceramic powder as a pozzolanic supplementary filler of cement for developing sustainable building materials, J. Clean. Prod., 259(2020), art. No. 120853.

[72]

Y.J. Ding, X.Y. Zhang, B.Y. Wu, B. Liu, and S.G. Zhang, Highly porous ceramics production using slags from smelting of spent automotive catalysts, Resour. Conserv. Recycl., 166(2021), art. No. 105373.

[73]

Z.M. Wang, X.J. Lyu, G. Yao, P. Wu, J.X. Wang, and J. Wei, Preparation of Ca-Si-Al-Mg porous ceramics by Co-operation of Ca&Mg-contained soda residue and altered rock gold tailings, J. Clean. Prod., 262(2020), art. No. 121345.

[74]

Zeng L, Sun HJ, Peng TJ, Zheng WM. Preparation of porous glass-ceramics from coal fly ash and asbestos tailings by high-temperature pore-forming. Waste Manage., 2020, 106, 184.

[75]

Zhu JB, Yan H. Microstructure and properties of mullite-based porous ceramics produced from coal fly ash with added Al2O3. Int. J. Miner. Metall. Mater., 2017, 24(3): 309.

[76]

P. Perumal, A. Hasnain, T. Luukkonen, P. Kinnunen, and M. Illikainen, Role of surfactants on the synthesis of impure Kaolin-based alkali-activated, low-temperature porous ceramics, Open Ceram., 6(2021), art. No. 100097.

[77]

L. Zeng, H.J. Sun, T.J. Peng, and T. Hui, Effect of glass content on sintering kinetics, microstructure and mechanical properties of glass-ceramics from coal fly ash and waste glass, Mater. Chem. Phys., 260(2021), art. No. 124120.

[78]

Chen CH, Feng KQ, Zhou Y, Zhou HL. Effect of sintering temperature on the microstructure and properties of foamed glass-ceramics prepared from high-titanium blast furnace slag and waste glass. Int. J. Miner. Metall. Mater., 2017, 24(8): 931.

[79]

R.C. da Silva, F.N. Puglieri, D.M.d.G. Chiroli, G.A. Bartmeyer, E.T. Kubaski, and S.M. Tebcherani, Recycling of glass waste into foam glass boards: A comparison of cradle-to-gate life cycles of boards with different foaming agents, Sci. Total. Environ., 771(2021), art. No. 145276.

[80]

da Silva RC, Kubaski ET, Tenório-Neto ET, Lima-Tenório MK, Tebcherani SM. Foam glass using sodium hydroxide as foaming agent: Study on the reaction mechanism in soda-lime glass matrix. J. Non-Cryst. Solids, 2019, 511, 177.

[81]

Souza MT, Maia BGO, Teixeira LB, Oliveira KG, Teixeira AHB, Oliveira APN. Glass foams produced from glass bottles and eggshell wastes. Process. Saf. Environ. Prot., 2017, 111, 60.

[82]

Y.H. Niu, X.Y. Fan, D. Ren, W.C. Wang, Y.K. Li, Z.F. Yang, and L.X. Cui, Effect of Na2CO3 content on thermal properties of foam-glass ceramics prepared from smelting slag, Mater. Chem. Phys., 256(2020), art. No. 123610.

[83]

H.A. Abdel-Gawwad, M.S. Mohammed, and M. Heikal, Ultra-lightweight porous materials fabrication and hazardous lead-stabilization through alkali-activation/sintering of different industrial solid wastes, J. Clean. Prod., 244(2020), art. No. 118742.

[84]

Chen HC, Lin HR, Zhang PP, Yu L, Chen LJ, Huang X, Jiao BQ, Li DW. Immobilisation of heavy metals in hazardous waste incineration residue using SiO2-Al2O3-Fe2O3-CaO glass-ceramic. Ceram. Int., 2021, 47(6): 8468.

[85]

Luo J, Li X, Zhang FJ, Chen S, Ren D. Sintering of monoclinic SrAl2Si2O8 ceramics and their Sr immobilization. Int. J. Miner. Metall. Mater., 2021, 28(6): 1057.

[86]

X. Peng, Q. Shuai, H. Li, Q. Ding, Y. Gu, C.J. Cheng, and Z.H. Xu, Fabrication and fireproofing performance of the coal fly ash-metakaolin-based geopolymer foams, Materials, 13(2020), No. 7, art. No. 1750.

[87]

Thakur AK, Pappu A, Thakur VK. Synthesis and characterization of new class of geopolymer hybrid composite materials from industrial wastes. J. Clean. Prod., 2019, 230, 11.

[88]

Duan P, Yan CJ, Zhou W, Ren DM. Development of fly ash and iron ore tailing based porous geopolymer for removal of Cu(II) from wastewater. Ceram. Int., 2016, 42(12): 13507.

[89]

Novais RM, Carvalheiras J, Tobaldi DM, Seabra MP, Pullar RC, Labrincha JA. Synthesis of porous biomass fly ash-based geopolymer spheres for efficient removal of methylene blue from wastewaters. J. Clean. Prod., 2019, 207, 350.

[90]

J.H. Zhao, L.Y. Tong, B.E. Li, T.H. Chen, C.P. Wang, G.Q. Yang, and Y. Zheng, Eco-friendly geopolymer materials: A review of performance improvement, potential application and sustainability assessment, J. Clean. Prod., 307(2021), art. No. 127085.

[91]

J.R. Gasca-Tirado, A. Manzano-Ramírez, R.R. Velázquez-Castillo, B.E. Gómez-Luna, R.F. Nava-Mendoza, J.M. López-Romero, L.M. Apátiga-Castro, and E.M. Rivera-Muñoz, Porous geopolymer as a possible template for a phase change material, Mater. Chem. Phys., 236(2019), art. No. 121785.

[92]

Gao H, Liao LB, Liu H, Mei LF, Wang ZJ, Huang DL, Lv G, Zhu GD, Wang CX. Optimization of thermal insulation performance of porous geopolymers under the guidance of thermal conductivity calculation. Ceram. Int., 2020, 46(10): 16537.

[93]

Alvarenga P, Rodrigues D, Mourinha C, Palma P, de Varennes A, Cruz N, Tarelho LAC, Rodrigues S. Use of wastes from the pulp and paper industry for the remediation of soils degraded by mining activities: Chemical, biochemical and ecotoxicological effects. Sci. Total. Environ., 2019, 686, 1152.

[94]

Guo FQ, Zhao XM, Peng KY, Liang S, Jia XP, Qian L. Catalytic reforming of biomass primary tar from pyrolysis over waste steel slag based catalysts. Int. J. Hydrogen Energy, 2019, 44(31): 16224.

[95]

Loy ACM, Yusup S, Lam MK, Chin BLF, Shahbaz M, Yamamoto A, Acda MN. The effect of industrial waste coal bottom ash as catalyst in catalytic pyrolysis of rice husk for syngas production. Energy Convers. Manage., 2018, 165, 541.

[96]

Shao LH, Wei GT, Wang YZ, Li ZM, Zhang LY, Zhao SK, Zhou M. Preparation and application of acidified/calcined red mud catalyst for catalytic degradation of butyl xanthate in Fenton-like process. Environ. Sci. Pollut. Res., 2016, 23(15): 15202.

[97]

Das B, Mohanty K. A review on advances in sustainable energy production through various catalytic processes by using catalysts derived from waste red mud. Renewable Energy, 2019, 143, 1791.

[98]

G.P. Shi, T.W. Liu, G.Z. Li, and Z. Wang, A novel thermal insulation composite fabricated with industrial solid wastes and expanded polystyrene beads by compression method, J. Clean. Prod., 279(2021), art. No. 123420.

[99]

Zhang RF, Feng JJ, Cheng XD, Gong LL, Li Y, Zhang HP. Porous thermal insulation materials derived from fly ash using a foaming and slip casting method. Energy Build., 2014, 81, 262.

[100]

Li RF, Zhou Y, Li CW, Li SB, Huang ZY. Recycling of industrial waste iron tailings in porous bricks with low thermal conductivity. Constr. Build. Mater., 2019, 213, 43.

AI Summary AI Mindmap
PDF

126

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/