Review of the fabrication and application of porous materials from silicon-rich industrial solid waste
Chao Miao , Lixing Liang , Fan Zhang , Shumei Chen , Kaixuan Shang , Jinlong Jiang , Yi Zhang , Jing Ouyang
International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (3) : 424 -438.
Review of the fabrication and application of porous materials from silicon-rich industrial solid waste
Porous materials have promise as sound insulation, heat barrier, vibration attenuation, and catalysts. Most industrial solid wastes, such as tailings, coal gangue, and fly ash are rich in silicon. Additionally, a high silicon content waste is a potential raw material for the synthesis of silicon-based, multi-porous materials such as zeolites, mesoporous silica, glass—ceramics, and geopolymer foams. Representative silicon-rich industrial solid wastes (SRISWs) are the focus of this mini review of the processing and application of porous silicon materials with respect to the physical and chemical properties of the SRISW. The transformation methods of preparing porous materials from SRISWs are summarized, and their research status in micro-, meso-, and macro-scale porous materials are described. Possible problems in the application of SRISWs and in the preparation of functional porous materials are analyzed, and their development prospects are discussed. This review should provide a typical reference for the recycling and use of industrial solid wastes to develop sustainable “green materials.”
silicon-rich industrial solid waste / porous materials / physicochemical properties / material utilization of solid wastes
| [1] |
|
| [2] |
|
| [3] |
Z.G. Wang, J. Lv, F. Gu, J. Yang, and J.F. Guo, Environmental and economic performance of an integrated municipal solid waste treatment: A Chinese case study, Sci. Total. Environ., 709(2020), art. No. 136096. |
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
W. Ferdous, A. Manalo, R. Siddique, P. Mendis, Z.G. Yan, H.S. Wong, W. Lokuge, T. Aravinthan, and P. Schubel, Recycling of landfill wastes (tyres, plastics and glass) in construction—A review on global waste generation, performance, application and future opportunities, Resour. Conserv. Recycl., 173(2021), art. No. 105745. |
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
Y.L. Tan, B.H. Hameed, and A.Z. Abdullah, Deoxygenation of pyrolysis vapour derived from durian shell using catalysts prepared from industrial wastes rich in Ca, Fe, Si and Al, Sci. Total. Environ., 703(2020), art. No. 134902. |
| [16] |
|
| [17] |
|
| [18] |
M. Vidaurre-Arbizu, S. Pérez-Bou, A. Zuazua-Ros, and C. Martín-Gómez, From the leather industry to building sector: Exploration of potential applications of discarded solid wastes, J. Clean. Prod., 291(2021), art. No. 125960. |
| [19] |
J.S. Zhao, K. Ni, Y.P. Su, and Y.X. Shi, An evaluation of iron ore tailings characteristics and iron ore tailings concrete properties, Constr. Build. Mater., 286(2021), art. No. 122968. |
| [20] |
Y.L. Zhang and T.C. Ling, Reactivity activation of waste coal gangue and its impact on the properties of cement-based materials — A review, Constr. Build. Mater., 234(2020), art. No. 117424. |
| [21] |
M.F. Wang and X.M. Liu, Applications of red mud as an environmental remediation material: A review, J. Hazard. Mater., 408(2021), art. No. 124420. |
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
M. Hecini, M. Tablaoui, S. Aoudj, B. Palahouane, O. Bouchelaghem, S. Beddek, and N. Drouiche, Recovery of silicon carbide and synthesis of silica materials from silicon ingot cutting fluid waste, Sep. Purif. Technol., 254(2021), art. No. 117556. |
| [36] |
C. Lu, H.M. Yang, J. Wang, Q. Tan, and L.J. Fu, Utilization of iron tailings to prepare high-surface area mesoporous silica materials, Sci. Total. Environ., 736(2020), art. No. 139483. |
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
J.W. Guo, X.M. Liu, J.M. Yu, C.F. Xu, Y.F. Wu, D.A. Pan, and R.A. Senthil, An overview of the comprehensive utilization of silicon-based solid waste related to PV industry, Resour. Conserv. Recycl., 169(2021), art. No. 105450. |
| [42] |
A. Gedik, An exploration into the utilization of recycled waste glass as a surrogate powder to crushed stone dust in asphalt pavement construction, Constr. Build. Mater., 300(2021), art. No. 123980. |
| [43] |
|
| [44] |
L. Han, J.X. Wang, Z. Liu, Y.B. Zhang, Y.X. Jin, J.X. Li, and D.M. Wang, Synthesis of fly ash-based self-supported zeolites foam geopolymer via saturated steam treatment, J. Hazard. Mater., 393(2020), art. No. 122468. |
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
C.N. Qin, M.Z. Yao, Y. Liu, Y.J. Yang, Y.F. Zong, and H. Zhao, MFC/NFC-based foam/aerogel for production of porous materials: Preparation, properties and applications, Materials, 13(2020), No. 23, art. No. 5568. |
| [49] |
I.G. Clayson, D. Hewitt, M. Hutereau, T. Pope, and B. Slater, High throughput methods in the synthesis, characterization, and optimization of porous materials, Adv. Mater., 32(2020), No. 44, art. No. 2002780. |
| [50] |
|
| [51] |
S. Pourrahim, A. Salem, S. Salem, and R. Tavangar, Application of solid waste of ductile cast iron industry for treatment of wastewater contaminated by reactive blue dye via appropriate nano-porous magnesium oxide, Environ. Pollut., 256(2020), art. No. 113454. |
| [52] |
|
| [53] |
J.Q. Liu, J. Goss, T. Calverley, Y.J. Liu, C. Broomall, J. Kang, R. Golombeski, D. Anaya, B. Moe, K. Mabe, G. Watson, and A. Wetzel, Carbon molecular sieve fiber with 3.4–4.9 Angstrom effective micropores for propylene/propane and other gas separations, Microporous Mesoporous Mater., 305(2020), art. No. 110341. |
| [54] |
J. Hou, H.C. Zhang, G.P. Simon, and H.T. Wang, Polycrystalline advanced microporous framework membranes for efficient separation of small molecules and ions, Adv. Mater., 32(2020), No. 18, art. No. 1902009. |
| [55] |
A. Khaleque, M.M. Alam, M. Hoque, S. Mondal, J.B. Haider, B.T. Xu, M.A.H. Johir, A.K. Karmakar, J.L. Zhou, M.B. Ahmed, and M.A. Moni, Zeolite synthesis from low-cost materials and environmental applications: A review, Environ. Adv., 2(2020), art. No. 100019. |
| [56] |
D.X. Ouyang, Y.T. Zhuo, L. Hu, Q. Zeng, Y.H. Hu, and Z.G. He, Research on the adsorption behavior of heavy metal ions by porous material prepared with silicate tailings, Minerals, 9(2019), No. 5, art. No. 291. |
| [57] |
G.Y. Dong, G.Y. Tian, L.L. Gong, Q.G. Tang, M.Y. Li, J.P. Meng, and J.S. Liang, Mesoporous zinc silicate composites derived from iron ore tailings for highly efficient dye removal: Structure and morphology evolution, Micropor. Mesopor. Mater., 305(2020), art. No. 110352. |
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
S.Z. Salleh, A. Awang Kechik, A.H. Yusoff, M.A.A. Taib, M. Mohamad Nor, M. Mohamad, T.G. Tan, A. Ali, M.N. Masri, J.J. Mohamed, S.K. Zakaria, J.G. Boon, F. Budiman, and P.T. Teo, Recycling food, agricultural, and industrial wastes as pore-forming agents for sustainable porous ceramic production: A review, J. Clean. Prod., 306(2021), art. No. 127264. |
| [62] |
|
| [63] |
W.X. Shang, Z.W. Peng, Y.W. Huang, F.Q. Gu, J. Zhang, H.M. Tang, L. Yang, W.G. Tian, M.J. Rao, G.H. Li, and T. Jiang, Production of glass-ceramics from metallurgical slags, J. Clean. Prod., 317(2021), art. No. 128220. |
| [64] |
P.R. Monich, A.R. Romero, D. Desideri, and E. Bernardo, Waste-derived glass-ceramics fired in nitrogen: Stabilization and functionalization, Constr. Build. Mater., 232(2020), art. No. 117265. |
| [65] |
|
| [66] |
C.P. Xi, J.M. Zhou, F. Zheng, J.M. Gao, P.F. Hu, Y. Li, Q. Zhen, S. Bashir, and J.L. Liu, Conversion of extracted titanium tailing and waste glass to value-added porous glass ceramic with improved performances, J. Environ. Manage., 261(2020), art. No. 110197. |
| [67] |
|
| [68] |
|
| [69] |
W.M. Zheng, H.J. Sun, T.J. Peng, and L. Zeng, Novel preparation of foamed glass-ceramics from asbestos tailings and waste glass by self-expansion in high temperature, J. Non-Cryst. Solids, 529(2020), art. No. 119767. |
| [70] |
Y.H. Ren, Q. Ren, X.L. Wu, J.L. Zheng, and O. Hai, Recycling of solid wastes ferrochromium slag for preparation of ecofriendly high-strength spinel-corundum ceramics, Mater. Chem. Phys., 239(2020), art. No. 122060. |
| [71] |
L. Li, W.F. Liu, Q.X. You, M.C. Chen, and Q. Zeng, Waste ceramic powder as a pozzolanic supplementary filler of cement for developing sustainable building materials, J. Clean. Prod., 259(2020), art. No. 120853. |
| [72] |
Y.J. Ding, X.Y. Zhang, B.Y. Wu, B. Liu, and S.G. Zhang, Highly porous ceramics production using slags from smelting of spent automotive catalysts, Resour. Conserv. Recycl., 166(2021), art. No. 105373. |
| [73] |
Z.M. Wang, X.J. Lyu, G. Yao, P. Wu, J.X. Wang, and J. Wei, Preparation of Ca-Si-Al-Mg porous ceramics by Co-operation of Ca&Mg-contained soda residue and altered rock gold tailings, J. Clean. Prod., 262(2020), art. No. 121345. |
| [74] |
|
| [75] |
|
| [76] |
P. Perumal, A. Hasnain, T. Luukkonen, P. Kinnunen, and M. Illikainen, Role of surfactants on the synthesis of impure Kaolin-based alkali-activated, low-temperature porous ceramics, Open Ceram., 6(2021), art. No. 100097. |
| [77] |
L. Zeng, H.J. Sun, T.J. Peng, and T. Hui, Effect of glass content on sintering kinetics, microstructure and mechanical properties of glass-ceramics from coal fly ash and waste glass, Mater. Chem. Phys., 260(2021), art. No. 124120. |
| [78] |
|
| [79] |
R.C. da Silva, F.N. Puglieri, D.M.d.G. Chiroli, G.A. Bartmeyer, E.T. Kubaski, and S.M. Tebcherani, Recycling of glass waste into foam glass boards: A comparison of cradle-to-gate life cycles of boards with different foaming agents, Sci. Total. Environ., 771(2021), art. No. 145276. |
| [80] |
|
| [81] |
|
| [82] |
Y.H. Niu, X.Y. Fan, D. Ren, W.C. Wang, Y.K. Li, Z.F. Yang, and L.X. Cui, Effect of Na2CO3 content on thermal properties of foam-glass ceramics prepared from smelting slag, Mater. Chem. Phys., 256(2020), art. No. 123610. |
| [83] |
H.A. Abdel-Gawwad, M.S. Mohammed, and M. Heikal, Ultra-lightweight porous materials fabrication and hazardous lead-stabilization through alkali-activation/sintering of different industrial solid wastes, J. Clean. Prod., 244(2020), art. No. 118742. |
| [84] |
|
| [85] |
|
| [86] |
X. Peng, Q. Shuai, H. Li, Q. Ding, Y. Gu, C.J. Cheng, and Z.H. Xu, Fabrication and fireproofing performance of the coal fly ash-metakaolin-based geopolymer foams, Materials, 13(2020), No. 7, art. No. 1750. |
| [87] |
|
| [88] |
|
| [89] |
|
| [90] |
J.H. Zhao, L.Y. Tong, B.E. Li, T.H. Chen, C.P. Wang, G.Q. Yang, and Y. Zheng, Eco-friendly geopolymer materials: A review of performance improvement, potential application and sustainability assessment, J. Clean. Prod., 307(2021), art. No. 127085. |
| [91] |
J.R. Gasca-Tirado, A. Manzano-Ramírez, R.R. Velázquez-Castillo, B.E. Gómez-Luna, R.F. Nava-Mendoza, J.M. López-Romero, L.M. Apátiga-Castro, and E.M. Rivera-Muñoz, Porous geopolymer as a possible template for a phase change material, Mater. Chem. Phys., 236(2019), art. No. 121785. |
| [92] |
|
| [93] |
|
| [94] |
|
| [95] |
|
| [96] |
|
| [97] |
|
| [98] |
G.P. Shi, T.W. Liu, G.Z. Li, and Z. Wang, A novel thermal insulation composite fabricated with industrial solid wastes and expanded polystyrene beads by compression method, J. Clean. Prod., 279(2021), art. No. 123420. |
| [99] |
|
| [100] |
|
/
| 〈 |
|
〉 |