Carbon materials: The burgeoning promise in electronics

Yuting Zheng , Junjun Wei , Jinlong Liu , Liangxian Chen , Kang An , Xiaotong Zhang , Haitao Ye , Xiaoping Ouyang , Chengming Li

International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (3) : 404 -423.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (3) : 404 -423. DOI: 10.1007/s12613-021-2358-3
Invited Review

Carbon materials: The burgeoning promise in electronics

Author information +
History +
PDF

Abstract

Current electronic technology based on silicon is approaching its physical and scientific limits. Carbon-based devices have numerous advantages for next generation electronics (e.g., fast speed, low power consumption and simple process), that when combined with the unique nature of the versatile allotropes of carbon elements, are creating an electronics revolution. Carbon electronics are greatly advancing with new preparations and sophisticated designs. In this perspective, representatives with various dimensions, e.g., carbon nanotubes, graphene, bulk diamond, and their extraordinary performance, are reviewed. The associated state-of-the-art devices and composite hybrid all-carbon structures are also emphasized to reveal their potential in the electronics field. Advances in commercial production have improved the cost efficiency, material quality, and device design, accelerating the promise of carbon materials.

Keywords

carbon materials / nanotube / graphene / diamond / electronic devices

Cite this article

Download citation ▾
Yuting Zheng, Junjun Wei, Jinlong Liu, Liangxian Chen, Kang An, Xiaotong Zhang, Haitao Ye, Xiaoping Ouyang, Chengming Li. Carbon materials: The burgeoning promise in electronics. International Journal of Minerals, Metallurgy, and Materials, 2022, 29(3): 404-423 DOI:10.1007/s12613-021-2358-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Service RF. Is silicon’s reign nearing its end?. Science, 2009, 323(5917): 1000.

[2]

Waldrop MM. The chips are down for Moore’s law. Nature, 2016, 530(7589): 144.

[3]

Raychowdhury A, Roy K. Carbon nanotube electronics: Design of high-performance and low-power digital circuits. IEEE Trans. Circuits Syst. I: Regul. Pap., 2007, 54(11): 2391.

[4]

Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. Nature, 1993, 363(6430): 603.

[5]

Peng LM, Zhang ZY, Qiu CG. Carbon nanotube digital electronics. Nat. Electron., 2019, 2(11): 499.

[6]

Chau R, Datta S, Doczy M, Doyle B, Jin B, Kavalieros J, Majumdar A, Metz M, Radosavljevic M. Benchmarking nanotechnology for high-performance and low-power logic transistor applications. IEEE Trans. Nanotechnol., 2005, 4(2): 153.

[7]

Peng LM, Zhang ZY, Wang S. Carbon nanotube electronics: Recent advances. Mater. Today, 2014, 17(9): 433.

[8]

Avouris P. Graphene: electronic and photonic properties and devices. Nano Lett., 2010, 10(11): 4285.

[9]

F. Molitor, J. Güttinger, C. Stampfer, S. Dröscher, A. Jacobsen, T. Ihn, and K. Ensslin, Electronic properties of graphene nanostructures, J. Phys.: Condens. Matter, 23(2011), No. 24, art. No. 243201.

[10]

Amaratunga GAJ. A dawn for carbon electronics. Science, 2002, 297(5587): 1657.

[11]

Nemanich RJ, Carlisle JA, Hirata A, Haenen K. CVD diamond—Research, applications, and challenges. MRS Bull., 2014, 39(6): 490.

[12]

Z.B. Tan, D. Zhang, H.R. Tian, Q.Q. Wu, S.J. Hou, J.C. Pi, H. Sadeghi, Z. Tang, Y. Yang, J.Y. Liu, Y.Z. Tan, Z.B. Chen, J. Shi, Z.Y. Xiao, C. Lambert, S.Y. Xie, and W.J. Hong, Atomically defined angstrom-scale all-carbon junctions, Nat. Commun., 10(2019), art. No. 1748.

[13]

Horner DA, Sternberg M, Zapol P, Curtiss LA. Carbon nanotunnels form from single-walled carbon nanotubes interacting with a diamond (100)-(2×1) surface. Diam. Relat. Mater., 2011, 20(8): 1103.

[14]

Hamada N, Sawada SI, Oshiyama A. New one-dimensional conductors: Graphitic microtubules. Phys. Rev. Lett., 1992, 68(10): 1579.

[15]

Knupfer M. Electronic properties of carbon nanostructures. Surf. Sci. Rep., 2001, 42(1–2): 1.

[16]

Avouris P, Chen ZH, Perebeinos V. Carbon-based electronics. Nat. Nanotechenol., 2007, 2(10): 605.

[17]

Anantram MP, Léonard F. Physics of carbon nanotube electronic devices. Rep. Prog. Phys., 2006, 69(3): 507.

[18]

H. Huang, X.Q. Liu, F. Liu, C.S. Liu, X.L. Liang, Z.H. Zhang, K.H. Liu, X.Z. Zhao, and L. Liao, Comprehensive insights into effect of van der Waals contact on carbon nanotube network field-effect transistors, Appl. Phys. Lett., 115(2019), No. 17, art. No. 173503.

[19]

Wu YQ, Farmer DB, Xia FN, Avouris P. Graphene electronics: Materials, devices, and circuits. Proc. IEEE, 2013, 101(7): 1620.

[20]

Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK. The electronic properties of graphene. Rev. Mod. Phys., 2009, 81(1): 109.

[21]

Wang JG, Ma FC, Liang WJ, Sun MT. Electrical properties and applications of graphene, hexagonal boron nitride (h-BN), and graphene/h-BN heterostructures. Mater. Today Phys., 2017, 2, 6.

[22]

Yang G, Li LH, Lee WB, Ng MC. Structure of graphene and its disorders: A review. Sci. Technol. Adv. Mater., 2018, 19(1): 613.

[23]

Lu GH, Yu KH, Wen ZH, Chen JH. Semiconducting graphene: Converting graphene from semimetal to semiconductor. Nanoscale, 2013, 5(4): 1353.

[24]

M.S. Nevius, M. Conrad, F. Wang, A. Celis, M.N. Nair, A. Taleb-Ibrahimi, A. Tejeda, and E.H. Conrad, Semiconducting graphene from highly ordered substrate interactions, Phys. Rev. Lett., 115(2015), No. 13, art. No. 136802.

[25]

Ma L, Wang JL, Ding F. Recent progress and challenges in graphene nanoribbon synthesis. ChemPhysChen, 2013, 14(1): 47.

[26]

Thomale R. Electronics tuned in twisted bilayer graphene. Nature, 2020, 583(7816): 364.

[27]

Liu FY, Navaraj WT, Yogeswaran N, Gregory DH, Dahiya R. Van der waals contact engineering of graphene field-effect transistors for large-area flexible electronics. ACS Nano, 2019, 13(3): 3257.

[28]

Z.G. Wang, X.Y. Xiong, J.H. Li, and M.D. Dong, Screening Fermi-level pinning effect through van der waals contacts to monolayer MoS2, Mater. Today Phys., 16(2021), art. No. 100290.

[29]

Franklin AD, Luisier M, Han SJ, Tulevski G, Breslin CM, Gignac L, Lundstrom MS, Haensch W. Sub-10 nm carbon nanotube transistor. Nano Lett., 2012, 12(2): 758.

[30]

Manzeli S, Ovchinnikov D, Pasquier D, Yazyev OV, Kis A. 2D transition metal dichalcogenides. Nat. Rev. Mater., 2017, 2(8): 1.

[31]

Qin TC, Wang ZG, Wang YQ, Besenbacher F, Otyepka M, Dong MD. Recent progress in emerging two-dimensional transition metal carbides. Nneo Micro Lett., 2021, 13(1): 1

[32]

F. Li, R. Tao, B.L. Cao, L. Yang, and Z.G. Wang, Manipulating the light-matter interaction of PtS/MoS2 p-n junctions for high performance broadband photodetection, Adv. Funct. Mater., 31(2021), No. 36, art. No. 2104367.

[33]

X.M. Li, L. Tao, Z.F. Chen, H. Fang, X.S. Li, X.R. Wang, J.B. Xu, and H.W. Zhu, Graphene and related two-dimensional materials: Structure-property relationships for electronics and optoelectronics, Appl. Phys. Rev., 4(2017), No. 2, art. No. 021306.

[34]

Weiss NO, Zhou HL, Liao L, Liu Y, Jiang S, Huang Y, Duan XF. Graphene: an emerging electronic material. Adv. Mater., 2012, 24(43): 5782.

[35]

S.N. Shen, W. Shen, S. Liu, H. Li, Y.H. Chen, and H.Q. Qi, First-principles calculations of co-doping impurities in diamond, Mater. Today Commun., 23(2020), art. No. 100847.

[36]

Yang HC, Ma YD, Dai Y. Progress of structural and electronic properties of diamond: A mini review. Funct. Diam., 2021, 1(1): 150.

[37]

Isberg J, Hammersberg J, Johansson E, Wikström T, Twitchen DJ, Whitehead AJ, Coe SE, Scarsbrook GA. High carrier mobility in single-crystal plasma-deposited diamond. Science, 2002, 297(5587): 1670.

[38]

Nebel CE. Nitrogen-vacancy doped CVD diamond for quantum applications: A review. Semicond. Semimet., 2020, 103, 73.

[39]

Wort CJH, Balmer RS. Diamond as an electronic material. Mater. Today, 2008, 11(1–2): 22.

[40]

I. Stenger, M.A. Pinault-Thaury, T. Kociniewski, A. Lusson, E. Chikoidze, F. Jomard, Y. Dumont, J. Chevallier, and J. Barjon, Impurity-to-band activation energy in phosphorus doped diamond, J. Appl. Phys., 114(2013), No. 7, art. No. 073711.

[41]

Sakaguchi I, Gamo MN, Kikuchi Y, Yasu E, Haneda H, Suzuki T, Ando T. Sulfur: A donor dopant for n-type diamond semiconductors. Phys. Rev. B, 1999, 60(4): R2139.

[42]

Bhattacharyya S, Auciello O, Birrell J, Carlisle JA, Curtiss LA, Goyette AN, Gruen DM, Krauss AR, Schlueter J, Sumant A, Zapol P. Synthesis and characterization of highly-conducting nitrogen-doped ultrananocrystalline diamond films. Appl. Phys. Lett., 2001, 79(10): 1441.

[43]

T. Teraji, S. Koizumi, and Y. Koide, Ohmic contact for p-type diamond without postannealing, J. Appl. Phys., 104(2008), No. 1, art. No. 016104.

[44]

Jung M, Eun KY, Lee JK, Baik YJ, Lee KR, Park JW. Growth of carbon nanotubes by chemical vapor deposition. Diam. Relat. Mater., 2001, 10(3–7): 1235.

[45]

Z.X. Zhu, N. Wei, W.J. Cheng, B.Y. Shen, S.L. Sun, J. Gao, Q. Wen, R.F. Zhang, J. Xu, Y. Wang, and F. Wei, Rate-selected growth of ultrapure semiconducting carbon nanotube arrays, Nat. Commun., 10(2019), art. No. 4467.

[46]

Lin L, Deng B, Sun JY, Peng HL, Liu ZF. Bridging the gap between reality and ideal in chemical vapor deposition growth of graphene. Chem. Rev., 2018, 118(18): 9281.

[47]

Ju BY, Yang WS, Zhang Q, Hussain M, Xiu ZY, Qiao J, Wu GH. Research progress on the characterization and repair of graphene defects. Int. J. Miner. Metall. Mater., 2020, 27(9): 1179.

[48]

Wang MH, Huang M, Luo D, Li YQ, Choe M, Seong WK, Kim M, Jin S, Wang MR, Chatterjee S, Kwon Y, Lee Z, Ruoff RS. Single-crystal, large-area, fold-free monolayer graphene. Nature, 2021, 596(7873): 519.

[49]

Schwander M, Partes K. A review of diamond synthesis by CVD processes. Diam. Relat. Mater., 2011, 20(9): 1287.

[50]

Franklin AD. The road to carbon nanotube transistors. Nature, 2013, 498(7455): 443.

[51]

L. Ding, S.B. Liang, T. Pei, Z.Y. Zhang, S. Wang, W.W. Zhou, J. Liu, and L.M. Peng, Carbon nanotube based ultra-low voltage integrated circuits: Scaling down to 0.4 V, Appl. Phys. Lett., 100(2012), No. 26, art. No. 263116.

[52]

Qiu C, Zhang Z, Xiao M, Yang Y, Zhong D, Peng LM. Scaling carbon nanotube complementary transistors to 5-nm gate lengths. Science, 2017, 355(6322): 271.

[53]

K. Tamersit, Improving the performance of a junctionless carbon nanotube field-effect transistor using a split-gate, AEU Int. J. Electron. Commun., 115(2020), art. No. 153035.

[54]

Bishop MD, Hills G, Srimani T, Lau C, Murphy D, Fuller S, Humes J, Ratkovich A, Nelson M, Shulaker MM. Fabrication of carbon nanotube field-effect transistors in commercial silicon manufacturing facilities. Nat. Electron., 2020, 3(8): 492.

[55]

Sun DM, Liu C, Ren WC, Cheng HM. A review of carbon nanotube- and graphene-based flexible thin-film transistors. Small, 2013, 9(8): 1188.

[56]

Y. Choi, J. Kang, E.B. Secor, J. Sun, H. Kim, J.A. Lim, M.S. Kang, M.C. Hersam, and J.H. Cho, Capacitively coupled hybrid ion gel and carbon nanotube thin-film transistors for low voltage flexible logic circuits, Adv. Funct. Mater., 28(2018), No. 34, art. No. 1802610.

[57]

Liu LJ, Han J, Xu L, Zhou JS, Zhao CY, Ding SJ, Shi HW, Xiao MM, Ding L, Ma Z, Jin CH, Zhang ZY, Peng LM. Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics. Science, 2020, 368(6493): 850.

[58]

Shulaker MM, Hills G, Patil N, Wei H, Chen HY, Wong HSP, Mitra S. Carbon nanotube computer. Nature, 2013, 501(7468): 526.

[59]

Hills G, Lau C, Wright A, Fuller S, Bishop MD, Srimani T, Kanhaiya P, Ho R, Amer A, Stein Y, Murphy D, Arvind Chandrakasan A, Shulaker MM. Modern microprocessor built from complementary carbon nanotube transistors. Nature, 2019, 572(7771): 595.

[60]

Han SJ, Tang JS, Kumar B, Falk A, Farmer D, Tulevski G, Jenkins K, Afzali A, Oida S, Ott J, Hannon J, Haensch W. High-speed logic integrated circuits with solution-processed self-assembled carbon nanotubes. Nat. Nanotechnol., 2017, 12(9): 861.

[61]

Cao Q, Kim HS, Pimparkar N, Kulkarni JP, Wang CJ, Shim M, Roy K, Alam MA, Rogers JA. Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature, 2008, 454(7203): 495.

[62]

Yamada T, Hayamizu Y, Yamamoto Y, Yomogida Y, Izadi-Najafabadi A, Futaba DN, Hata KJ. A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol., 2011, 6(5): 296.

[63]

Harvey JD, Baker HA, Ortiz MV, Kentsis A, Heller DA. HIV detection via a carbon nanotube RNA sensor. ACS Sens., 2019, 4(5): 1236.

[64]

Khasminskaya S, Pyatkov F, Słowik K, Ferrari S, Kahl O, Kovalyuk V, Rath P, Vetter A, Hennrich F, Kappes MM, Gol’Tsman G, Korneev A, Rockstuhl C, Krupke R, Pernice WHP. Fully integrated quantum photonic circuit with an electrically driven light source. Nat. Photonics, 2016, 10(11): 727.

[65]

He XW, Hartmann NF, Ma XD, Kim Y, Ihly R, Blackburn JL, Gao WL, Kono J, Yomogida Y, Hirano A, Tanaka T, Kataura H, Htoon H, Doorn SK. Tunable room-temperature single-photon emission at telecom wavelengths from sp3 defects in carbon nanotubes. Nat. Photonics, 2017, 11(9): 577.

[66]

Mueller T, Kinoshita M, Steiner M, Perebeinos V, Bol AA, Farmer DB, Avouris P. Efficient narrow-band light emission from a single carbon nanotube p-n diode. Nat. Nanotechnol., 2010, 5(1): 27.

[67]

Hanein Y. Carbon nanotube integration into MEMS devices. Phys. Status Solidi B, 2010, 247(11–12): 2635.

[68]

A.D. Slattery, C.J. Shearer, J.G. Shapter, J.S. Quinton, and C.T. Gibson, Solution based methods for the fabrication of carbon nanotube modified atomic force microscopy probes, Nanomaterials, 7(2017), No. 11, art. No. 346.

[69]

Tachizaki T, Nakata T, Zhang KF, Yamakawa I, Taniguchi SI. Nanometer-precise optical length measurement using near-field scanning optical microscopy with sharpened single carbon nanotube probe. Ultramicroscopy, 2018, 186, 18.

[70]

Y. Zheng, G.X. Ni, C.T. Toh, C.Y. Tan, K. Yao, and B. Özyilmaz, Graphene field-effect transistors with ferroelectric gating, Phys. Rev. Lett., 105(2010), No. 16, art. No. 166602.

[71]

Li SR, Li JH, Wang YC, Yu CL, Li YX, Duan WH, Wang YY, Zhang JS. Large transport gap modulation in graphene via electric-field-controlled reversible hydrogenation. Nat. Electron., 2021, 4(4): 254.

[72]

Wang ZG, Liu JB, Hao X, Wang Y, Chen YF, Li PJ, Dong MD. Investigating the stability of molecule doped graphene field effect transistors. New J. Chem., 2019, 43(38): 15275.

[73]

Deng T, Zhang ZH, Liu YX, Wang YX, Su F, Li SS, Zhang Y, Li H, Chen HJ, Zhao ZR, Li Y, Liu Z. Three-dimensional graphene field-effect transistors as high-performance photodetectors. Nano Lett., 2019, 19(3): 1494.

[74]

Asad M, Bonmann M, Yang XX, Vorobiev A, Jeppson K, Banszerus L, Otto M, Stampfer C, Neumaier D, Stake J. The dependence of the high-frequency performance of graphene field-effect transistors on channel transport properties. IEEE J. Electron Devices Soc., 2020, 8, 457.

[75]

Bonmann M, Asad M, Yang XX, Generalov A, Vorobiev A, Banszerus L, Stampfer C, Otto M, Neumaier D, Stake J. Graphene field-effect transistors with high extrinsic f T and f max. IEEE Electron Device Lett., 2019, 40(1): 131.

[76]

Aissa MFB, Rezgui H, Nasri F, Belmabrouk H, Guizani A. Thermal transport in graphene field-effect transistors with ultrashort channel length. Superlattices Microstruct., 2019, 128, 265.

[77]

Vicarelli L, Vitiello MS, Coquillat D, Lombardo A, Ferrari AC, Knap W, Polini M, Pellegrini V, Tredicucci A. Graphene field-effect transistors as room-temperature terahertz detectors. Nat. Mater., 2012, 11(10): 865.

[78]

Han SJ, Garcia AV, Oida S, Jenkins KA, Haensch W. Graphene radio frequency receiver integrated circuit. Nat. Commun., 2014, 5(1): 1.

[79]

Lv HM, Wu HQ, Liu JB, Huang C, Li JF, Yu JH, Niu JB, Xu QX, Yu ZP, Qian H. Inverted process for graphene integrated circuits fabrication. Nanoscale, 2014, 6(11): 5826.

[80]

Bianchi M, Guerriero E, Fiocco M, Alberti R, Polloni L, Behnam A, Carrion EA, Pop E, Sordan R. Scaling of graphene integrated circuits. Nanoscale, 2015, 7(17): 8076.

[81]

Mueller T, Xia FN, Avouris P. Graphene photodetectors for high-speed optical communications. Nat. Photonics, 2010, 4(5): 297.

[82]

J.H. Kang, D. Sarkar, Y. Khatami, and K. Banerjee, Proposal for all-graphene monolithic logic circuits, Appl. Phys. Lett., 103(2013), No. 8, art. No. 083113.

[83]

Chen JH, Ishigami M, Jang C, Hines DR, Fuhrer MS, Williams ED. Printed graphene circuits. Adv. Mater., 2007, 19(21): 3623.

[84]

Hyun WJ, Park OO, Chin BD. Foldable graphene electronic circuits based on paper substrates. Adv. Mater., 2013, 25(34): 4729.

[85]

Ohno Y, Maehashi K, Matsumoto K. Chemical and biological sensing applications based on graphene field-effect transistors. Biosens. Bioelectron., 2010, 26(4): 1727.

[86]

Kumar B, Min K, Bashirzadeh M, Farimani AB, Bae MH, Estrada D, Kim YD, Yasaei P, Park YD, Pop E, Aluru NR, Salehi-Khojin A. The role of external defects in chemical sensing of graphene field-effect transistors. Nano Lett., 2013, 13(5): 1962.

[87]

G.S. Kulkarni, K. Reddy, Z.H. Zhong, and X.D. Fan, Graphene nanoelectronic heterodyne sensor for rapid and sensitive vapour detection, Nat. Commun., 5(2014), art. No. 4376.

[88]

V.T. Le, Y. Vasseghian, E.N. Dragoi, M. Moradi, and A.M. Khaneghah, A review on graphene-based electrochemical sensor for mycotoxins detection, Food Chem. Toxicol., 148(2021), art. No. 111931.

[89]

M.S. Mannoor, H. Tao, J.D. Clayton, A. Sengupta, D.L. Kaplan, R.R. Naik, N. Verma, F.G. Omenetto, and M.C. Mc-Alpine, Graphene-based wireless bacteria detection on tooth enamel, Nat. Commun., 3(2012), art. No. 763.

[90]

E.D. Walsh, D.K. Efetov, G.H. Lee, M. Heuck, J. Crossno, T.A. Ohki, P. Kim, D. Englund, and K.C. Fong, Graphene-based Josephson-junction single-photon detector, Phys. Rev. Appl., 8(2017), No. 2, art. No. 024022.

[91]

J. Warbinek, D. Leimbach, D. Lu, K. Wendt, D.J. Pegg, A. Yurgens, D. Hanstorp, and J. Welander, A graphene-based neutral particle detector, Appl. Phys. Lett., 114(2019), No. 6, art. No. 061902.

[92]

Yang Z, Pang Y, Han XL, Yang YF, Ling J, Jian MQ, Zhang YY, Yang Y, Ren TL. Graphene textile strain sensor with negative resistance variation for human motion detection. ACS Nano, 2018, 12(9): 9134.

[93]

Gu T, Petrone N, McMillan JF, van der Zande A, Yu M, Lo GQ, Kwong DL, Hone J, Wong CW. Regenerative oscillation and four-wave mixing in graphene optoelectronics. Nat. Photonics, 2012, 6(8): 554.

[94]

Giambra MA, Mišeikis V, Pezzini S, Marconi S, Montanaro A, Fabbri F, Sorianello V, Ferrari AC, Coletti C, Romagnoli M. Wafer-scale integration of graphene-based photonic devices. ACS Nano, 2021, 15(2): 3171.

[95]

Romagnoli M, Sorianello V, Midrio M, Koppens FHL, Huyghebaert C, Neumaier D, Galli P, Templ W, D’Errico A, Ferrari AC. Graphene-based integrated photonics for next-generation datacom and telecom. Nat. Rev. Mater., 2018, 3(10): 392.

[96]

J. Loomis, B. King, T. Burkhead, P. Xu, N. Bessler, E. Terentjev, and B. Panchapakesan, Graphene-nanoplatelet-based photomechanical actuators, Nanotechnology, 23(2012), No. 4, art. No. 045501.

[97]

Zhu SE, Shabani R, Rho J, Kim Y, Hong BH, Ahn JH, Cho HJ. Graphene-based bimorph microactuators. Nano Lett., 2011, 11(3): 977.

[98]

Rodrigues GdC, Zelenovskiy P, Romanyuk K, Luchkin S, Kopelevich Y, Kholkin A. Strong piezoelectricity in single-layer graphene deposited on SiO2 grating substrates. Nat. Commun., 2015, 6(1): 1

[99]

Moldovan CF, Vitale WA, Sharma P, Bernard LS, Ionescu AM. Fabrication process and characterization of suspended graphene membranes for RF NEMS capacitive switches. Microelectron. Eng., 2015, 145, 5.

[100]

T. Szkopek and E. Martel, Suspended graphene electromechanical switches for energy efficient electronics, Prog. Quantum Electron., 76(2021), art. No. 100315.

[101]

Sharma P, Perruisseau-Carrier J, Moldovan C, Ionescu AM. Electromagnetic performance of RF NEMS graphene capacitive switches. IEEE Trans. Nanotechnol., 2014, 13(1): 70.

[102]

Yuan XL, Zheng YT, Zhu XH, Liu JL, Liu JW, Li CM, Jin P, Wang ZG. Recent progress in diamond-based MOSFETs. Int. J. Miner. Metall. Mater., 2019, 26(10): 1195.

[103]

Crawford KG, Weil JD, Shah PB, Ruzmetov DA, Neupane MR, Kingkeo K, Birdwell AG, Ivanov TG. Diamond field-effect transistors with V2O5-induced transfer doping: Scaling to 50-nm gate length. IEEE Trans. Electron Devices, 2020, 67(6): 2270.

[104]

Shikata S. Single crystal diamond wafers for high power electronics. Diam. Relat. Mater., 2016, 65, 168.

[105]

Saha NC, Oishi T, Kim S, Kawamata Y, Koyama K, Kasu M. 145-MW/cm2 heteroepitaxial diamond MOSFETs with NO2 p-type doping and an Al2O3 passivation layer. IEEE Electron Device Lett., 2020, 41(7): 1066.

[106]

Z.B. Guo and T.P. Chow, Performance projection of high-voltage, quasi-lateral diamond MOSFET for power electronics applications, Diam. Relat. Mater., 104(2020), art. No. 107741.

[107]

Iwataki M, Oi N, Horikawa K, Amano S, Nishimura J, Kageura T, Inaba M, Hiraiwa A, Kawarada H. Over 12000 A/cm2 and 3.2 mΩcm2 miniaturized vertical-type two-dimensional hole gas diamond MOSFET. IEEE Electron Device Lett., 2020, 41(1): 111.

[108]

C.J. Zhou, J.J. Wang, J.C. Guo, C. Yu, Z.Z. He, Q.B. Liu, X.D. Gao, S.J. Cai, and Z.H. Feng, Radiofrequency performance of hydrogenated diamond MOSFETs with alumina, Appl. Phys. Lett., 114(2019), No. 6, art. No. 063501.

[109]

Yu XX, Hu WX, Zhou JJ, Liu B, Tao T, Kong YC, Chen TS, Zheng YD. 1 W/mm output power density for Hterminated diamond MOSFETs with Al2O3/SiO2 Bi-layer passivation at 2 GHz. IEEE J. Electron Devices Soc., 2020, 9, 160.

[110]

H. Umezawa, S. Shikata, Y. Kato, Y. Mokuno, A. Seki, H. Suzuki, and T. Bessho, Characterization of insulated-gate bipolar transistor temperature on insulating, heat-spreading polycrystalline diamond substrate, Jpn. J. Appl. Phys., 56(2017), No. 1, art. No. 011301.

[111]

Liu JW, Teraji T, Da B, Koide Y. High output current boron-doped diamond metal-semiconductor field-effect transistors. IEEE Electron Device Lett., 2019, 40(11): 1748.

[112]

Bormashov VS, Troschiev SY, Tarelkin SA, Volkov AP, Teteruk DV, Golovanov AV, Kuznetsov MS, Kornilov NV, Terentiev SA, Blank VD. High power density nuclear battery prototype based on diamond Schottky diodes. Diam. Relat. Mater., 2018, 84, 41.

[113]

K. Su, Z.Y. Ren, J.F. Zhang, L.Y. Liu, J.C. Zhang, Y.C. Zhang, Q. He, C.F. Zhang, X.P. Ouyang, and Y. Hao, High performance hydrogen/oxygen terminated CVD single crystal diamond radiation detector, Appl. Phys. Lett., 116(2020), No. 9, art. No. 092104.

[114]

G. Bassi, L. Bosisio, P. Cristaudo, M. Dorigo, A. Gabrielli, Y. Jin, C. La Licata, L. Lanceri, and L. Vitale, Calibration of diamond detectors for dosimetry in beam-loss monitoring, Nucl. Instrum. Methods Phys. Res. Sect. A, 1004(2021), art. No. 165383.

[115]

N. Kurinsky, T.C. Yu, Y. Hochberg, and B. Cabrera, Diamond detectors for direct detection of sub-GeV dark matter, Phys. Rev. D, 99(2019), No. 12, art. No. 123005.

[116]

Liao MY. Progress in semiconductor diamond photodetectors and MEMS sensors. Funct. Diam., 2021, 1(1): 29.

[117]

Sankaran KJ, Yeh CJ, Kunuku S, Thomas JP, Pobedinskas P, Drijkoningen S, Sundaravel B, Leou KC, Leung KT, van Bael MK, Schreck M, Lin IN, Haenen K. Microstructural effect on the enhancement of field electron emission properties of nanocrystalline diamond films by Li-ion implantation and annealing processes. ACS Omega, 2018, 3(8): 9956.

[118]

F. Lloret, K.J. Sankaran, J. Millan-Barba, D. Desta, R. Rouzbahani, P. Pobedinskas, M. Gutierrez, H.G. Boyen, and K. Haenen, Improved field electron emission properties of phosphorus and nitrogen co-doped nanocrystalline diamond films, Nanomaterials, 10(2020), No. 6, art. No. 1024.

[119]

Auciello O, Aslam DM. Review on advances in micro-crystalline, nanocrystalline and ultrananocrystalline diamond films-based micro/nano-electromechanical systems technologies. J. Mater. Sci., 2021, 56(12): 7171.

[120]

Y. Tao, J.M. Boss, B.A. Moores, and C.L. Degen, Single-crystal diamond nanomechanical resonators with quality factors exceeding one million, Nat. Commun., 5(2014), art. No. 3638.

[121]

Shibata T, Kitamoto Y, Unno K, Makino E. Micromachining of diamond film for MEMS applications. J. Microelectromech. Syst., 2000, 9(1): 47.

[122]

Liao MY, Rong ZW, Hishita S, Imura M, Koizumi S, Koide Y. Nanoelectromechanical switch fabricated from single crystal diamond: Experiments and modeling. Diam. Relat. Mater., 2012, 24, 69.

[123]

Fu J, Wang F, Zhu TF, Wang W, Liu ZC, Li FN, Liu ZC, Denu GA, Zhang JW, Wang HX, Hou X. Single crystal diamond cantilever for micro-electromechanical systems. Diam. Relat. Mater., 2017, 73, 267.

[124]

Zheng YT, Li CM, Liu JL, Wei JJ, Ye HT. Diamond with nitrogen: States, control, and applications. Funct. Diam., 2021, 1(1): 63.

[125]

Ho KO, Shen Y, Pang YY, Leung WK, Zhao N, Yang S. Diamond quantum sensors: From physics to applications on condensed matter research. Funct. Diam., 2021, 1(1): 160.

[126]

Bian K, Zheng WT, Zeng XZ, Chen XK, Stöhr R, Denisenko A, Yang S, Wrachtrup J, Jiang Y. Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nat. Commun., 2021, 12(1): 1.

[127]

M.J. Turner, N. Langellier, R. Bainbridge, D. Walters, S. Meesala, T.M. Babinec, P. Kehayias, A. Yacoby, E. Hu, M. Lončar, R.L. Walsworth, and E.V. Levine, Magnetic field fingerprinting of integrated-circuit activity with a quantum diamond microscope, Phys. Rev. Appl., 14(2020), No. 1, art. No. 014097.

[128]

Rafii-Tabar H. Computational modelling of thermo-mechanical and transport properties of carbon nanotubes. Phys. Rep., 2004, 390(4–5): 235.

[129]

S.S. Zhang, Y.J. Wu, K. Luo, B. Liu, Y. Shu, Y. Zhang, L. Sun, Y.F. Gao, M.D. Ma, Z.H. Li, B.Z. Li, P. Ying, Z.S. Zhao, W.T. Hu, V. Benavides, O.P. Chernogorova, A.V. Soldatov, J.L. He, D.L. Yu, B. Xu, and Y.J. Tian, Narrow-gap, semiconducting, superhard amorphous carbon with high toughness, derived from C60 fullerene, Cell Rep. Phys. Sci., 2(2021), No. 9, art. No. 100575.

[130]

Pachfule P, Shinde D, Majumder M, Xu Q. Fabrication of carbon nanorods and graphene nanoribbons from a metal-organic framework. Nat. Chem., 2016, 8(7): 718.

[131]

P.B. Bennett, Z. Pedramrazi, A. Madani, Y.C. Chen, D.G. de Oteyza, C. Chen, F.R. Fischer, M.F. Crommie, and J. Bokor, Bottom-up graphene nanoribbon field-effect transistors, Appl. Phys. Lett., 103(2013), No. 25, art. No. 253114.

[132]

Shi EZ, Li HB, Yang L, Hou JF, Li YC, Li L, Cao AY, Fang Y. Carbon nanotube network embroidered graphene films for monolithic all-carbon electronics. Adv. Mater., 2015, 27(4): 682.

[133]

Tung VC, Huang JH, Tevis I, Kim F, Kim J, Chu CW, Stupp SI, Huang JX. Surfactant-free water-processable photoconductive all-carbon composite. J. Am. Chem. Soc., 2011, 133(13): 4940.

[134]

C.G. Zhang, J. Meng, K. Ma, X. Jiao, and Z.H. Yuan, A three-dimensional structure of ternary carbon for high performance supercapacitor, Diam. Relat. Mater., 109(2020), art. No. 108075.

[135]

C.H. Kang, C. Shen, M.S.M. Saheed, N.M. Mohamed, T.K. Ng, B.S. Ooi, and Z.A. Burhanudin, Carbon nanotube-graphene composite film as transparent conductive electrode for GaN-based light-emitting diodes, Appl. Phys. Lett., 109(2016), No. 8, art. No. 081902.

[136]

S.H. Lu, Y.C. Wang, H.Y. Liu, M.S. Miao, and Y.M. Ma, Self-assembled ultrathin nanotubes on diamond (100) surface, Nat. Commun., 5(2014), art. No. 3666.

[137]

Li PB, Xiang ZL, Rabl P, Nori F. Hybrid quantum device with nitrogen-vacancy centers in diamond coupled to carbon nanotubes. Phys. Rev. Lett., 2016, 117(1): 015502.

[138]

Kaiser K, Scriven LM, Schulz F, Gawel P, Gross L, Anderson HL. An sp-hybridized molecular carbon allotrope, cyclo[18]carbon. Science, 2019, 365(6459): 1299.

[139]

Wang JT, Jin X, Liu ZB, Yu G, Ji QQ, Wei HM, Zhang J, Zhang K, Li DQ, Yuan Z, Li JC, Liu P, Wu Y, Wei Y, Wang JP, Li QQ, Zhang LN, Kong J, Fan SS, Jiang KL. Growing highly pure semiconducting carbon nanotubes by electrotwisting the helicity. Nat. Catal., 2018, 1(5): 326.

[140]

T. Lei, L.L. Shao, Y.Q. Zheng, G. Pitner, G.H. Fang, C.X. Zhu, S.C. Li, R. Beausoleil, H.S.P. Wong, T.C. Huang, K.T. Cheng, and Z.N. Bao, Low-voltage high-performance flexible digital and analog circuits based on ultrahigh-purity semiconducting carbon nanotubes, Nat. Commun., 10(2019), art. No. 2161.

[141]

Novoselov KS, Fal’ko VI, Colombo L, Gellert PR, Schwab MG, Kim K. A roadmap for graphene. Nature, 2012, 490(7419): 192.

[142]

Liu JW, Ohsato H, Liao MY, Imura M, Watanabe E, Koide Y. Logic circuits with hydrogenated diamond field-effect transistors. IEEE Electron Device Lett., 2017, 38(7): 922.

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/