Mica-stabilized polyethylene glycol composite phase change materials for thermal energy storage

Dongyao Zhang , Chuanchang Li , Niangzhi Lin , Baoshan Xie , Jian Chen

International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (1) : 168 -176.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (1) : 168 -176. DOI: 10.1007/s12613-021-2357-4
Article

Mica-stabilized polyethylene glycol composite phase change materials for thermal energy storage

Author information +
History +
PDF

Abstract

Mica was used as a supporting matrix for composite phase change materials (PCMs) in this work because of its distinctive morphology and structure. Composite PCMs were prepared using the vacuum impregnation method, in which mica served as the supporting material and polyethylene glycol (PEG) served as the PCM. Fourier transform infrared and X-ray diffraction analysis confirmed that the addition of PEG had no effect on the crystal structure of mica. Moreover, no chemical reaction occurred between PEG and mica during the vacuum impregnation process, and no new substance was formed. The maximum load of mica-stabilized PEG was 46.24%, the phase change temperature of M400/PEG was 46.03°C, and the latent heat values of melting and cooling were 77.75 and 77.73 J·g−1, respectively. The thermal conductivity of M400/PEG was 2.4 times that of pure PEG. The thermal infrared images indicated that the thermal response of M400/PEG improved relative to that of pure PEG. The leakage test confirmed that mica could stabilize PEG and that M400/PEG had great form-stabilized property. These results demonstrate that M400/PEG has potential in the field of building energy conservation.

Keywords

mica / polyethylene glycol / phase change materials / thermal energy storage

Cite this article

Download citation ▾
Dongyao Zhang, Chuanchang Li, Niangzhi Lin, Baoshan Xie, Jian Chen. Mica-stabilized polyethylene glycol composite phase change materials for thermal energy storage. International Journal of Minerals, Metallurgy, and Materials, 2022, 29(1): 168-176 DOI:10.1007/s12613-021-2357-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sari A, Bicer A, Al-Ahmed A, Al-Sulaiman FA, Zahir MH, Mohamed SA. Silica fume/capric acid-palmitic acid composite phase change material doped with CNTs for thermal energy storage. Sol. Energy Mater. Sol. Cells, 2018, 179, 353.

[2]

P.M. Hou, M.H. Qin, S.Q. Cui, and K. Zu, Preparation and characterization of metal-organic framework/microencapsulated phase change material composites for indoor hygrothermal control, J. Build. Eng., 31(2020), art. No. 101345.

[3]

Zhou FQ, Qin F, Yi Z, Yao WT, Liu ZM, Wu XW, Wu PH. Ultra-wideband and wide-angle perfect solar energy absorber based on Ti nanorings surface plasmon resonance. Phys. Chem. Chem. Phys., 2021, 23(31): 17041.

[4]

Y.Q. Jiang, G. Cheng, Y.H. Li, Z.X. He, J. Zhu, W. Meng, L. Dai, and L. Wang, Promoting vanadium redox flow battery performance by ultra-uniform ZrO2@C from metal-organic framework, Chem. Eng. J., 415(2021), art. No. 129014.

[5]

R.D. Beltrán and J. Martínez-Gómez, Analysis of phase change materials (PCM) for building wallboards based on the effect of environment, J. Build. Eng., 24(2019), art. No. 100726.

[6]

Y.N. Gao, F. He, X. Meng, Z.Y. Wang, M. Zhang, H.T. Yu, and W.J. Gao, Thermal behavior analysis of hollow bricks filled with phase-change material (PCM), J. Build. Eng., 31(2020), art. No. 101447.

[7]

B.J. Nie, Z. Du, B.Y. Zou, Y.L. Li, and Y.L. Ding, Performance enhancement of a phase-change-material based thermal energy storage device for air-conditioning applications, Energy Build., 214(2020), art. No. 109895.

[8]

Zhu YL, Chi Y, Liang SE, Luo X, Chen KP, Tian CR, Wang JH, Zhang L. Novel metal coated nanoencapsulated phase change materials with high thermal conductivity for thermal energy storage. Sol. Energy Mater. Sol. Cells, 2018, 176, 212.

[9]

Wang TT, Li CP, Xie XS, Lu BA, He ZX, Liang SQ, Zhou J. Anode materials for aqueous zinc ion batteries: Mechanisms, properties, and perspectives. ACS Nano, 2020, 14(12): 16321.

[10]

Min X, Xiao J, Fang MH, Wang WA, Zhao YJ, Liu YG, Abdelkader AM, Xi K, Kumar RV, Huang ZH. Potassium-ion batteries: Outlook on present and future technologies. Energy Environ. Sci., 2021, 14(4): 2186.

[11]

Qiu T, Yang JG, Bai XJ. Insight into the change in carbon structure and thermodynamics during anthracite transformation into graphite. Int. J. Miner. Metall. Mater., 2020, 27(2): 162.

[12]

Yilmaz B, Yüksel B, Orhan G, Aydin D, Utlu Z. Synthesis and characterization of salt-impregnated anodic aluminum oxide composites for low-grade heat storage. Int. J. Miner. Metall. Mater., 2020, 27(1): 112.

[13]

Y.X. Yu, Y.F. Zhou, Y.J. Zhang, Y.Q. Zhang, X.D. Liu, X.J. Liang, J.P. Liu, S.Q. Chen, and W.D. Xiang, Novel CsPbX3@mica composites with excellent optical properties for high efficiency and wide color gamut white light-emitting diode, J. Lumin., 236(2021), art. No. 118129.

[14]

Kashyap V, Sakunkaewkasem S, Jafari P, Nazari M, Eslami B, Nazifi S, Irajizad P, Marquez MD, Lee TR, Ghasemi H. Full spectrum solar thermal energy harvesting and storage by a molecular and phase-change hybrid material. Joule, 2019, 3(12): 3100.

[15]

Gerkman MA, Han GGD. Toward controlled thermal energy storage and release in organic phase change materials. Joule, 2020, 4(8): 1621.

[16]

Y.L. Song, N. Zhang, Y.G. Jing, X.L. Cao, Y.P. Yuan, and F. Haghighat, Experimental and numerical investigation on dodecane/expanded graphite shape-stabilized phase change material for cold energy storage, Energy, 189(2019), art. No. 116175.

[17]

Browne MC, Norton B, McCormack SJ. Phase change materials for photovoltaic thermal management. Rnnewable Sustainable Energy Rev., 2015, 47, 762.

[18]

Papadimitratos A, Sobhansarbandi S, Pozdin V, Zakhidov A, Hassanipour F. Evacuated tube solar collectors integrated with phase change materials. Sol. Energy, 2016, 129, 10.

[19]

J. Triano-Juárez, E.V. Macias-Melo, I. Hernández-Pérez, K.M. Aguilar-Castro, and J. Xamán, Thermal behavior of a phase change material in a building roof with and without reflective coating in a warm humid zone, J. Build. Eng., 32(2020), art. No. 101648.

[20]

M.Y. Luo, J.Q. Song, Z.Y. Ling, Z.G. Zhang, and X.M. Fang, Phase change material coat for battery thermal management with integrated rapid heating and cooling functions from −40°C to 50°C, Mater. Today Energy, 20(2021), art. No. 100652.

[21]

An ZJ, Jia L, Ding Y, Dang C, Li XJ. A review on lithium-ion power battery thermal management technologies and thermal safety. J. Therm. Sci., 2017, 26(5): 391.

[22]

Lu Y, Xiao XD, Fu J, Huan CM, Qi S, Zhan YJ, Zhu YQ, Xu G. Novel smart textile with phase change materials encapsulated core-sheath structure fabricated by coaxial electrospinning. Chem. Eng. J., 2019, 355, 532.

[23]

Min X, Sun B, Chen S, Fang MH, Wu XW, Liu YG, Abdelkader A, Huang ZH, Liu T, Xi K, Vasant Kumar R. A textile-based SnO2 ultra-flexible electrode for lithium-ion batteries. Energy Storage Mater., 2019, 16, 597.

[24]

Z.D. Tang, H.Y. Gao, X. Chen, Y.F. Zhang, A. Li, and G. Wang, Advanced multifunctional composite phase change materials based on photo-responsive materials, Nano Energy, 80(2021), art. No. 105454.

[25]

Yang L, Yuan YP, Zhang N, Dong YF, Sun YF, Ji WH. Photo-to-thermal conversion and energy storage of lauric acid/expanded graphite composite phase change materials. Int. J. Energy Res., 2020, 44(11): 8555.

[26]

C. Confalonieri, A.T. Grimaldi, and E. Gariboldi, Ball-milled Al-Sn alloy as composite Phase Change Material, Mater. Today Energy, 17(2020), art. No. 100456.

[27]

Cui YY, Ke YJ, Liu C, Chen Z, Wang N, Zhang LM, Zhou Y, Wang SC, Gao YF, Long Y. Thermochromic VO2 for energy-efficient smart windows. Joule, 2018, 2(9): 1707.

[28]

Zhou Y, Wang SC, Peng JQ, Tan YT, Li CC, Boey FYC, Long Y. Liquid thermo-responsive smart window derived from hydrogel. Joule, 2020, 4(11): 2458.

[29]

Bao XH, Tian YY, Yuan L, Cui HZ, Tang WC, Fung WH, Qi H. Development of high performance PCM cement composites for passive solar buildings. Energy Build., 2019, 194, 33.

[30]

Lin YX, Jia YT, Alva G, Fang GY. Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage. Renewable Sustainable Energy Rev., 2018, 82, 2730.

[31]

Deng YY, Yang LJ. Preparation and characterization of polyethylene glycol (PEG) hydrogel as shape-stabilized phase change material. Appl. Therm. Eng., 2017, 114, 1014.

[32]

Memon SA, Cui HZ, Zhang H, Xing F. Utilization of macro encapsulated phase change materials for the development of thermal energy storage and structural lightweight aggregate concrete. Appl. Energy, 2015, 139, 43.

[33]

Zhao YJ, Min X, Huang ZH, Liu YG, Wu XW, Fang MH. Honeycomb-like structured biological porous carbon encapsulating PEG: A shape-stable phase change material with enhanced thermal conductivity for thermal energy storage. Energy Build., 2018, 158, 1049.

[34]

Zhang N, Yuan YP. Synthesis and thermal properties of nanoencapsulation of paraffin as phase change material for latent heat thermal energy storage. Energy Built Environ., 2020, 1(4): 410.

[35]

Joybari MM, Haghighat F, Seddegh S, Yuan YP. Simultaneous charging and discharging of phase change materials: Development of correlation for liquid fraction. Sol. Energy, 2019, 188, 788.

[36]

Liu CZ, Rao ZH, Zhao JT, Huo YT, Li YM. Review on nanoencapsulated phase change materials: Preparation, characterization and heat transfer enhancement. Nano Energy, 2015, 13, 814.

[37]

Li CC, Zhao XB, Zhang B, Xie BS, He ZX, Chen J, He JJ. Stearic acid/copper foam as composite phase change materials for thermal energy storage. J. Therm. Sci., 2020, 29(2): 492.

[38]

Chai LX, Wang XD, Wu DZ. Development of bifunctional microencapsulated phase change materials with crystalline titanium dioxide shell for latent-heat storage and photocatalytic effectiveness. Appl. Energy, 2015, 138, 661.

[39]

Huang XB, Chen X, Li A, Atinafu D, Gao HY, Dong WJ, Wang G. Shape-stabilized phase change materials based on porous supports for thermal energy storage applications. Chem. Eng. J., 2019, 356, 641.

[40]

Y.J. Zhao, X. Min, Z.P. Ding, S. Chen, C.Z. Ai, Z.L. Liu, T.Z. Yang, X.W. Wu, Y.G. Liu, S.W. Lin, Z.H. Huang, P. Gao, H. Wu, and M.H. Fang, Metal-based nanocatalysts via a universal design on cellular structure, Adv. Sci., 7(2020), No. 3, art. No. 1902051.

[41]

J.W. Li, X.C. Zuo, X.G. Zhao, D.K. Li, and H.M. Yang, Stearic acid hybridizing kaolinite as shape-stabilized phase change material for thermal energy storage, Appl. Clay Sci., 183(2019), art. No. 105358.

[42]

H. Yi, Z. Ai, Y.L. Zhao, X. Zhang, and S.X. Song, Design of 3D-network montmorillonite nanosheet/stearic acid shape-stabilized phase change materials for solar energy storage, Sol. Energy Mater. Sol. Cells, 204(2020), art. No. 110233.

[43]

Xie N, Luo JM, Li ZP, Huang ZW, Gao XN, Fang YT, Zhang ZG. Salt hydrate/expanded vermiculite composite as a form-stable phase change material for building energy storage. Sol. Energy Mater. Sol. Cells, 2019, 189, 33.

[44]

Jia CM, Zhao XY, Lai YH, Zhao JJ, Wang PC, Liou DS, Wang P, Liu ZH, Zhang WH, Chen W, Chu YH, Li JY. Highly flexible, robust, stable and high efficiency perovskite solar cells enabled by van der Waals epitaxy on mica substrate. Nano Energy, 2019, 60, 476.

[45]

Ilić B, Radonjanin V, Malešev M, Zdujić M, Mitrović A. Effects of mechanical and thermal activation on pozzolanic activity of kaolin containing mica. Appl. Clay Sci., 2016, 123, 173.

[46]

Tang BT, Wei HP, Zhao DF, Zhang SF. Light-heat conversion and thermal conductivity enhancement of PEG/SiO2 composite PCM by in situ Ti4O7 doping. Sol. Energy Mater. Sol. Cells, 2017, 161, 183.

[47]

Dai HB, Li HX, Wang FH. An alternative process for the preparation of Cu-coated mica composite powder. Surf. Coat. Technol., 2006, 201(6): 2859.

[48]

Reddy Polu A, Kumar R. Impedance spectroscopy and FTIR studies of PEG-based polymer electrolytes. J. Chem., 2011, 8(1): 347

[49]

Li CC, Xie BS, Chen DL, Chen J, Li W, Chen ZS, Gibb SW, Long Y. Ultrathin graphite sheets stabilized stearic acid as a composite phase change material for thermal energy storage. Energy, 2019, 166, 246.

AI Summary AI Mindmap
PDF

139

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/