Effect of extrusion on the microstructure and mechanical properties of a low-alloyed Mg−2Zn−0.8Sr−0.2Ca matrix composite reinforced by TiC nano-particles

Zedong Wang , Kaibo Nie , Kunkun Deng , Jungang Han

International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (11) : 1981 -1990.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (11) : 1981 -1990. DOI: 10.1007/s12613-021-2353-8
Article

Effect of extrusion on the microstructure and mechanical properties of a low-alloyed Mg−2Zn−0.8Sr−0.2Ca matrix composite reinforced by TiC nano-particles

Author information +
History +
PDF

Abstract

A low-alloyed Mg−2Zn−0.8Sr−0.2Ca matrix composite reinforced by TiC nano-particles was successfully prepared by semi-solid stirring under the assistance of ultrasonic, and then the as-cast composite was hot extruded. The results indicated that the volume fraction of dynamical recrystallization and the recrystallized grain size have a certain decline at lower extrusion temperature or rate. The finest grain size of ∼0.30 µm is obtained in the sample extruded at 200°C and 0.1 mm/s. The as-extruded sample displays a strong basal texture intensity, and the basal texture intensity increases to 5.937 mud while the extrusion temperature increases from 200 to 240°C. The ultra-high mechanical properties (ultimate tensile strength of 480.2 MPa, yield strength of 462 MPa) are obtained after extrusion at 200°C with a rate of 0.1 mm/s. Among all strengthening mechanisms for the present composite, the grain refinement contributes the most to the increase in strength. A mixture of cleavage facets and dimples were observed in the fracture surfaces of three as-extruded nanocomposites, which explain a mix of brittle-ductile fracture way of the samples.

Keywords

magnesium matrix composite / extrusion / microstructure and mechanical properties / texture / fracture

Cite this article

Download citation ▾
Zedong Wang, Kaibo Nie, Kunkun Deng, Jungang Han. Effect of extrusion on the microstructure and mechanical properties of a low-alloyed Mg−2Zn−0.8Sr−0.2Ca matrix composite reinforced by TiC nano-particles. International Journal of Minerals, Metallurgy, and Materials, 2022, 29(11): 1981-1990 DOI:10.1007/s12613-021-2353-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Song JF, She J, Chen DL, Pan FS. Latest research advances on magnesium and magnesium alloys worldwide. J. Magnes. Alloys, 2020, 8(1): 1.

[2]

Pan HC, Kang R, Li JR, Xie HB, Zeng ZR, Huang QY, Yang CL, Ren YP, Qin GW. Mechanistic investigation of a low-alloy Mg−Ca-based extrusion alloy with high strength-ductility synergy. Acta Mater., 2020, 186, 278.

[3]

Wang XJ, Xu DK, Wu RZ, Chen XB, Peng QM, Jin L, Xin YC, Zhang ZQ, Liu Y, Chen XH, Chen G, Deng KK, Wang HY. What is going on in magnesium alloys?. J. Mater. Sci. Technol., 2018, 34(2): 245.

[4]

Kang GZ, Li H. Review on cyclic plasticity of magnesium alloys: Experiments and constitutive models. Int. J. Miner. Metall. Mater., 2021, 28(4): 567.

[5]

Shahin M, Munir K, Wen CE, Li YC. Magnesium matrix nanocomposites for orthopedic applications: A review from mechanical, corrosion, and biological perspectives. Acta Biomater., 2019, 96, 1.

[6]

K.B. Nie, Z.H. Zhu, P. Munroe, K.K. Deng, and J.G. Han, Effect of extrusion speed on mixed grain microstructure and tensile properties of a Mg−2.9Zn−1.1Ca−0.5Mn nanocomposite reinforced by a low mass fraction of TiCp, Mater. Sci. Eng. A, 796(2020), art. No. 140223.

[7]

Jeong HY, Kim B, Kim SG, Kim HJ, Park SS. Effect of Ce addition on the microstructure and tensile properties of extruded Mg−Zn−Zr alloys. Mater. Sci. Eng. A, 2014, 612, 217.

[8]

Bettles CJ, Gibson MA, Venkatesan K. Enhanced age-hardening behaviour in Mg−4 wt.% Zn micro-alloyed with Ca. Scripta Mater., 2004, 51(3): 193.

[9]

R. Alizadeh, J.Y. Wang, and J. LLorca, Precipitate strengthening of pyramidal slip in Mg−Zn alloys, Mater. Sci. Eng. A, 804(2021), art. No. 140697.

[10]

Nakata T, Mezaki T, Ajima R, Xu C, Oh-Ishi K, Shimizu K, Hanaki S, Sasaki TT, Hono K, Kamado S. High-speed extrusion of heat-treatable Mg−Al−Ca−Mn dilute alloy. Scripta Mater., 2015, 101, 28.

[11]

X. Meng, Z.T. Jiang, S.J. Zhu, and S.K. Guan, Effects of Sr addition on microstructure, mechanical and corrosion properties of biodegradable Mg−Zn−Ca alloy, J. Alloys Compd., 838(2020), art. No. 155611.

[12]

J.Y. Wang, Y.W. Chen, Z. Chen, J. Llorca, and X.Q. Zeng, Deformation mechanisms of Mg-Ca-Zn alloys studied by means of micropillar compression tests, Acta Mater., 217(2021), art. No. 117151.

[13]

Liu Y, Li N, Arul Kumar M, Pathak S, Wang J, McCabe RJ, Mara NA, Tomé CN. Experimentally quantifying critical stresses associated with basal slip and twinning in magnesium using micropillars. Acta Mater., 2017, 135, 411.

[14]

Sun XF, Wang CJ, Deng KK, Nie KB, Zhang XC, Xiao XY. High strength SiCp/AZ91 composite assisted by dynamic precipitated Mg17Al12 phase. J. Alloys Compd., 2018, 732, 328.

[15]

Deng KK, Shi JY, Wang CJ, Wang XJ, Wu YW, Nie KB, Wu K. Microstructure and strengthening mechanism of bimodal size particle reinforced magnesium matrix composite. Compos. A: Appl. Sci. Manuf., 2012, 43(8): 1280.

[16]

Nie KB, Wang XJ, Deng KK, Hu XS, Wu K. Magnesium matrix composite reinforced by nanoparticles — A review. J. Magnes. Alloys, 2021, 9(1): 57.

[17]

Li CP, Wang ZG, Wang HY, Zhu X, Wu M, Jiang QC. Fabrication of nano-SiC particulate reinforced Mg-8Al-1Sn composites by powder metallurgy combined with hot extrusion. J. Mater. Eng. Perform., 2016, 25(11): 5049.

[18]

Yu H, Zhou HP, Sun Y, Ren LL, Wan ZP, Hu LX. Microstructures and mechanical properties of ultrafine-grained Ti/AZ31 magnesium matrix composite prepared by powder metallurgy. Adv. Powder Technol., 2018, 29(12): 3241.

[19]

Meenashisundaram GK, Gupta M. Low volume fraction nano-titanium particulates for improving the mechanical response of pure magnesium. J. Alloys Compd., 2014, 593, 176.

[20]

Wang XJ, Wu K, Zhang HF, Huang WX, Chang H, Gan WM, Zheng MY, Peng DL. Effect of hot extrusion on the microstructure of a particulate reinforced magnesium matrix composite. Mater. Sci. Eng. A, 2007, 465(1–2): 78

[21]

Guo YC, Nie KB, Kang XK, Deng KK, Han JG, Zhu ZH. Achieving high-strength magnesium matrix nanocomposite through synergistical effect of external hybrid (SiC+TiC) nanoparticles and dynamic precipitated phase. J. Alloys Compd., 2019, 771, 847.

[22]

Samadpour F, Faraji G, Siahsarani A. Processing of AM60 magnesium alloy by hydrostatic cyclic expansion extrusion at elevated temperature as a new severe plastic deformation method. Int. J. Miner. Metall. Mater., 2020, 27(5): 669.

[23]

Zhang Z, Zhang JH, Wang J, Li ZH, Xie JS, Liu SJ, Guan K, Wu RZ. Toward the development of Mg alloys with simultaneously improved strength and ductility by refining grain size via the deformation process. Int. J. Miner. Metall. Mater., 2021, 28(1): 30.

[24]

Qiao XG, Ying T, Zheng MY, Wei ED, Wu K, Hu XS, Gan WM, Brokmeier HG, Golovin IS. Microstructure evolution and mechanical properties of nano-SiCp/AZ91 composite processed by extrusion and equal channel angular pressing (ECAP). Mater. Charact., 2016, 121, 222.

[25]

Tao XY, Du J, Yang YC, Li YP, Xia Y, Gan YP, Huang H, Zhang WK, Li XD. TiC nanorods derived from cotton fibers: Chloride-assisted VLS growth, structure, and mechanical properties. Cryst. Growth Des., 2011, 11(10): 4422.

[26]

Shen MJ, Ying WF, Wang XJ, Zhang MF, Wu K. Development of high performance magnesium matrix nanocomposites using nano-SiC particulates as reinforcement. J. Mater. Eng. Perform., 2015, 24(10): 3798.

[27]

M. Paramsothy, J. Chan, R. Kwok, and M. Gupta, Adding TiC nanoparticles to magnesium alloy ZK60A for strength/ductility enhancement, J. Nanomater., 2011(2011), art. No. 642980.

[28]

Rashad M, Pan FS, Guo W, Lin H, Asif M, Irfan M. Effect of alumina and silicon carbide hybrid reinforcements on tensile, compressive and microhardness behavior of Mg-3Al-1Zn alloy. Mater. Charact., 2015, 106, 382.

[29]

Shuai SS, Guo EY, Wang J, Phillion AB, Jing T, Ren ZM, Lee PD. Synchrotron tomographic quantification of the influence of Zn concentration on dendritic growth in Mg−Zn alloys. Acta Mater., 2018, 156, 287.

[30]

Nie KB, Zhu ZH, Munroe P, Deng KK, Han JG. The effect of Zn/Ca ratio on the microstructure, texture and mechanical properties of dilute Mg−Zn−Ca−Mn alloys that exhibit superior strength. J. Mater. Sci., 2020, 55(8): 3588.

[31]

Nie KB, Zhu ZH, Munroe P, Deng KK, Han JG. Microstructure, tensile properties and work hardening behavior of an extruded Mg−Zn−Ca−Mn magnesium alloy. Acta Metall. Sin. Engl. Lett., 2020, 33(7): 922.

[32]

Zhou BC, Shang SL, Wang Y, Liu ZK. Diffusion coefficients of alloying elements in dilute Mg alloys: A comprehensive first-principles study. Acta Mater., 2016, 103, 573.

[33]

Wang YN, Huang JC. Texture analysis in hexagonal materials. Mater. Chem. Phys., 2003, 81(1): 11.

[34]

Yang A, Nie KB, Deng KK, Li YN. Improved tensile properties of low-temperature and low-speed extruded Mg−χAl−(4.8−χ)Ca−0.6Mn alloys. J. Mater. Res. Technol., 2020, 9(5): 11717.

[35]

Du YZ, Qiao XG, Zheng MY, Wu K, Xu SW. Development of high-strength, low-cost wrought Mg−2.5 mass% Zn alloy through micro-alloying with Ca and La. Mater. Des., 2015, 85, 549.

[36]

Guan DK, Rainforth WM, Ma L, Wynne B, Gao JH. Twin recrystallization mechanisms and exceptional contribution to texture evolution during annealing in a magnesium alloy. Acta Mater., 2017, 126, 132.

[37]

Habibnejad-Korayem M, Mahmudi R, Poole WJ. Work hardening behavior of Mg-based nano-composites strengthened by Al2O3 nano-particles. Mater. Sci. Eng. A, 2013, 567, 89.

[38]

Meenashisundaram GK, Gupta M. Synthesis and characterization of high performance low volume fraction TiC reinforced Mg nanocomposites targeting biocompatible/structural applications. Mater. Sci. Eng. A, 2015, 627, 306.

[39]

Nie KB, Wang XJ, Wu K, Xu L, Zheng MY, Hu XS. Processing, microstructure and mechanical properties of magnesium matrix nanocomposites fabricated by semisolid stirring assisted ultrasonic vibration. J. Alloys Compd., 2011, 509(35): 8664.

[40]

Li WJ, Deng KK, Zhang X, Wang CJ, Kang JW, Nie KB, Liang W. Microstructures, tensile properties and work hardening behavior of SiCp/Mg−Zn−Ca composites. J. Alloys Compd., 2017, 695, 2215.

[41]

Shang SJ, Deng KK, Nie KB, Li JC, Zhou SS, Xu FJ, Fan JF. Microstructure and mechanical properties of SiCp/Mg−Al−Zn composites containing Mg17Al12 phases processed by low-speed extrusion. Mater. Sci. Eng. A, 2014, 610, 243.

[42]

Zhang X, Deng KK, Li WJ, Wang HX, Nie KB, Xu FJ, Liang W. Microstructure and mechanical properties of Mg−Al−Ca alloy influenced by SiCp size. Mater. Sci. Eng. A, 2015, 647, 15.

[43]

Nie KB, Guo YC, Deng KK, Kang XK. High strength TiCp/Mg−Zn−Ca magnesium matrix nanocomposites with improved formability at low temperature. J. Alloys Compd., 2019, 792, 267.

[44]

Wang XJ, Nie KB, Hu XS, Wang YQ, Sa XJ, Wu K. Effect of extrusion temperatures on microstructure and mechanical properties of SiCp/Mg−Zn−Ca composite. J. Alloys Compd., 2012, 532, 78.

[45]

Kang JW, Sun XF, Deng KK, Xu FJ, Zhang X, Bai Y. High strength Mg−9Al serial alloy processed by slow extrusion. Mater. Sci. Eng. A, 2017, 697, 211.

[46]

Sanaty-Zadeh A. Comparison between current models for the strength of particulate-reinforced metal matrix nanocomposites with emphasis on consideration of Hall-Petch effect. Mater. Sci. Eng. A, 2012, 531, 112.

[47]

Nie KB, Deng KK, Wang XJ, Wang T, Wu K. Influence of SiC nanoparticles addition on the microstructural evolution and mechanical properties of AZ91 alloy during isothermal multidirectional forging. Mater. Charact., 2017, 124, 14.

[48]

Nie KB, Zhu ZH, Deng KK, Han JG. Effect of extrusion temperature on microstructure and mechanical properties of a low-alloying and ultra-high strength Mg−Zn−Ca−Mn matrix composite containing trace TiC nanoparticles. J. Magnes. Alloys, 2020, 8(3): 676.

[49]

Du YZ, Qiao XG, Zheng MY, Wu K, Xu SW. The microstructure, texture and mechanical properties of extruded Mg−5.3Zn−0.2Ca−0.5Ce (wt%) alloy. Mater. Sci. Eng. A, 2015, 620, 164.

[50]

Habibnejad-Korayem M, Mahmudi R, Poole WJ. Enhanced properties of Mg-based nano-composites reinforced with Al2O3 nano-particles. Mater. Sci. Eng. A, 2009, 519(1–2): 198.

[51]

K.B. Nie, J.G. Han, K.K. Deng, and Z.H. Zhu, Simultaneous improvements in tensile strength and elongation of a Mg−2Zn−0.8Sr−0.2Ca alloy by a combination of microalloying and low content of TiC nanoparticles, Mater. Lett., 260(2020), art. No. 126951.

AI Summary AI Mindmap
PDF

140

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/