Multicomponent transition metal phosphide for oxygen evolution

Lihua Liu , Ning Li , Jingrui Han , Kaili Yao , Hongyan Liang

International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (3) : 503 -512.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (3) : 503 -512. DOI: 10.1007/s12613-021-2352-9
Article

Multicomponent transition metal phosphide for oxygen evolution

Author information +
History +
PDF

Abstract

Transition metal phosphides (TMPs) have exhibited decent performance in an oxygen evolution reaction (OER), which is a kinetic bottleneck in many energy storages and conversion systems. Most reported catalysts are composed of three or fewer metallic components. The inherent complexity of multicomponent TMPs with more than four metallic components hinders their investigation in rationally designing the structure and, more importantly, comprehending the component-activity correlation. Through hydrothermal growth and subsequent phosphorization, we reported a facile strategy for combining TMPs with tunable elemental compositions (Ni, Fe, Mn, Co, Cu) on a two-dimensional titanium carbide (MXene) flake. The obtained TMPs/MXene hybrid nanostructures demonstrate homogeneously distributed elements. They exhibit high electrical conductivity and strong interfacial interaction, resulting in an accelerated reaction kinetics and long-term stability. The results of different component catalysts’ OER performance show that NiFeMnCoP/MXene is the most active catalyst, with a low overpotential of 240 mV at 10 mA·cm−2, a small Tafel slope of 41.43 mV·dec−1, and a robust long-term electrochemical stability. According to the electrocatalytic mechanism investigation, the enhanced NiFeMnCoP/MXene OER performance is due to the strong synergistic effect of the multi-elemental composition. Our work, therefore, provides a scalable synthesis route for multi-elemental TMPs and a valuable guideline for efficient MXene-supported catalysts design.

Keywords

multicomponent transition metal phosphides / electrocatalytic oxygen evolution reaction / MXene / synergistic effect

Cite this article

Download citation ▾
Lihua Liu, Ning Li, Jingrui Han, Kaili Yao, Hongyan Liang. Multicomponent transition metal phosphide for oxygen evolution. International Journal of Minerals, Metallurgy, and Materials, 2022, 29(3): 503-512 DOI:10.1007/s12613-021-2352-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aslam U, Rao VG, Chavez S, Linic S. Catalytic conversion of solar to chemical energy on plasmonic metal nanostructures. Nat. Catal., 2018, 1(9): 656.

[2]

Shi YM, Zhang B. Recent advances in transition metal phosphide nanomaterials: Synthesis and applications in hydrogen evolution reaction. Chem. Soc. Rev., 2016, 45(6): 1529.

[3]

Zou XX, Zhang Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev., 2015, 44(15): 5148.

[4]

Wang X, Liu CX, Gao CC, Yao KL, Masouleh SSM, Berté R, Ren HR, Menezes LDS, Cortés E, Bicket IC, Wang HY, Li N, Zhang ZL, Li M, Xie W, Yu YF, Fang YR, Zhang SP, Xu HX, Vomiero A, Liu YC, Botton GA, Maier SA, Liang HY. Self-constructed multiple plasmonic hotspots on an individual fractal to amplify broadband hot electron generation. ACS Nano, 2021, 15(6): 10553.

[5]

P.Q. Chen, H. Wu, Y.X. Tai, Y.F. Gao, J.Y. Chen, and J.G. Cheng, Novel confinement combustion method to nanosized WC/C for efficient electrocatalytic oxygen reduction, Int. J. Miner. Metall. Mater., (2021). https://doi.org/10.1007/s12613-021-2265-7.

[6]

Li GQ, Wen PK, Gao CQ, Zhang TY, Hu JY, Zhang YH, Guan SY, Li QF, Li B. Effects of CeO2 pre-calcined at different temperatures on the performance of Pt/CeO2−C electrocatalyst for methanol oxidation reaction. Int. J. Miner. Metall. Mater., 2021, 28(7): 1224.

[7]

Zhao HG, Liu GJ, You SJ, Camargo FVA, Zavelani-Rossi M, Wang XH, Sun CC, Liu B, Zhang YM, Han GT, Vomiero A, Gong X. Gram-scale synthesis of carbon quantum dots with a large Stokes shift for the fabrication of eco-friendly and high-efficiency luminescent solar concentrators. Energy Environ. Sci., 2021, 14(1): 396.

[8]

H.G. Zhao, R.J. Sun, Z.F. Wang, K.F. Fu, X. Hu, and Y.H. Zhang, Zero-dimensional perovskite nanocrystals for efficient luminescent solar concentrators, Adv. Funct. Mater., 29(2019), No. 30, art. No. 1902262.

[9]

Gao CC, Jiang YZ, Sun CJ, Han JR, He TW, Huang YM, Yao KL, Han M, Wang X, Wang YK, Gao YN, Liu YC, Yuan MJ, Liang HY. Multifunctional naphthol sulfonic salt incorporated in lead-free 2D tin halide perovskite for red light-emitting diodes. ACS Photonics, 2020, 7(8): 1915.

[10]

Yao KL, Xia YJ, Li J, Wang N, Han JR, Gao CC, Han M, Shen GQ, Liu YC, Seifitokaldani A, Sun XH, Liang HY. Metal-organic framework derived copper catalysts for CO2 to ethylene conversion. J. Mater. Chem. A, 2020, 8(22): 11117.

[11]

Wang N, Miao RK, Lee G, Vomiero A, Sinton D, Ip AH, Liang HY, Sargent EH. Suppressing the liquid product crossover in electrochemical CO2 reduction. SmartMat, 2021, 2(1): 12.

[12]

Han M, Wang N, Zhang B, Xia YJ, Li J, Han JR, Yao KL, Gao CC, He CN, Liu YC, Wang ZM, Seifitokaldani A, Sun XH, Liang HY. High-valent nickel promoted by atomically embedded copper for efficient water oxidation. ACS Catal., 2020, 10(17): 9725.

[13]

M.G. Kibria, J.P. Edwards, C.M. Gabardo, C.T. Dinh, A. Seifitokaldani, D. Sinton, and E.H. Sargent, Electrochemical CO2 reduction into chemical feedstocks: From mechanistic electrocatalysis models to system design, Adv. Mater., 31(2019), No. 31, art. No. 1807166.

[14]

Suen NT, Hung SF, Quan Q, Zhang N, Xu YJ, Chen HM. Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives. Chem. Soc. Rev., 2017, 46(2): 337.

[15]

Wang Y, Wang DS, Li YD. A fundamental comprehension and recent progress in advanced Pt-based ORR nanocatalysts. SmartMat, 2021, 2(1): 56.

[16]

M. Han, S.C. Li, C. Li, J. Wu, J.R. Han, N. Wang, Y.C. Liu, and H.Y. Liang, Strain-modulated Ni3Al alloy promotes oxygen evolution reaction, J. Alloys Compd., 844(2020), art. No. 156094.

[17]

Zhang KJ, Min XY, Zhang TZ, Si MY, Jiang J, Chai LY, Shi Y. Biodeposited nano-CdS drives the in situ growth of highly dispersed sulfide nanoparticles during pyrolysis for enhanced oxygen evolution reaction. ACS Appl. Mater. Interfaces, 2020, 12(49): 54553.

[18]

Chen YP, Rui K, Zhu JX, Dou SX, Sun WP. Recent progress on nickel-based oxide/(oxy)hydroxide electrocatalysts for the oxygen evolution reaction. Chem. A Eur. J., 2019, 25(3): 703.

[19]

Chen YZ, Jiang DJ, Gong ZQ, Li JY, Wang LN. Anodized metal oxide nanostructures for photoelectrochemical water splitting. Int. J. Miner. Metall. Mater., 2020, 27(5): 584.

[20]

P.P. Li, R.B. Zhao, H.Y. Chen, H.B. Wang, P.P. Wei, H. Huang, Q. Liu, T.S. Li, X.F. Shi, Y.Y. Zhang, M.L. Liu, and X.P. Sun, Recent advances in the development of water oxidation electrocatalysts at mild pH, Small, 15(2019), No. 13, art. No. 1805103.

[21]

L. An, C. Wei, M. Lu, H.W. Liu, Y.B. Chen, G.G. Scherer, A.C. Fisher, P.X. Xi, Z.J. Xu, and C.H. Yan, Recent development of oxygen evolution electrocatalysts in acidic environment, Adv. Mater., 33(2021), No. 20, art. No. 2006328.

[22]

I. Roger, M.A. Shipman, and M.D. Symes, Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting, Nat. Rev. Chem., 1(2017), art. No. 0003.

[23]

Chen JX, Long QW, Xiao K, Ouyang T, Li N, Ye SY, Liu ZQ. Vertically-interlaced NiFeP/MXene electrocatalyst with tunable electronic structure for high-efficiency oxygen evolution reaction. Sci. Bull., 2021, 66(11): 1063.

[24]

Wang HJ, Yin SL, Xu Y, Li XN, Alshehri AA, Yamauchi Y, Xue HR, Kaneti YV, Wang L. Direct fabrication of tri-metallic PtPdCu tripods with branched exteriors for the oxygen reduction reaction. J. Mater. Chem. A, 2018, 6(18): 8662.

[25]

Y.V. Kaneti, Y.N. Guo, N.L.W. Septiani, M. Iqbal, X.C. Jiang, T. Takei, B. Yuliarto, Z.A. Alothman, D. Golberg, and Y. Yamauchi, Self-templated fabrication of hierarchical hollow manganese-cobalt phosphide yolk-shell spheres for enhanced oxygen evolution reaction, Chem. Eng. J., 405(2021), art. No. 126580.

[26]

Septiani NLW, Kaneti YV, Fathoni KB, Guo YN, Ide Y, Yuliarto B, Jiang XC, Nugraha Dipojono HK, Golberg D, Yamauchi Y. Tailorable nanoarchitecturing of bimetallic nickel-cobalt hydrogen phosphate via the self-weaving of nanotubes for efficient oxygen evolution. J. Mater. Chem. A, 2020, 8(6): 3035.

[27]

Septiani NLW, Kaneti YV, Fathoni KB, Kani K, Allah AE, Yuliarto B, Nugraha Dipojono HK, Alothman ZA, Golberg D, Yamauchi Y. Self-assembly of two-dimensional bimetallic nickel-cobalt phosphate nanoplates into one-dimensional porous chainlike architecture for efficient oxygen evolution reaction. Chem. Mater., 2020, 32(16): 7005.

[28]

Wang X, Chai LL, Ding JY, Zhong L, Du YJ, Li TT, Hu Y, Qian JJ, Huang SM. Chemical and morphological transformation of MOF-derived bimetallic phosphide for efficient oxygen evolution. Nano Energy, 2019, 62, 745.

[29]

N. Zhang, X.B. Feng, D.W. Rao, X. Deng, L.J. Cai, B.C. Qiu, R. Long, Y.J. Xiong, Y. Lu, and Y. Chai, Lattice oxygen activation enabled by high-valence metal sites for enhanced water oxidation, Nat. Commun., 11(2020), art. No. 4066.

[30]

Wen YY, Wei ZT, Liu JH, Li R, Wang P, Zhou B, Zhang X, Li J, Li ZX. Synergistic cerium doping and MXene coupling in layered double hydroxides as efficient electrocatalysts for oxygen evolution. J. Energy Chem., 2021, 52, 412.

[31]

Li X, Huang WQ, Xia LX, Li YY, Zhang HW, Ma SF, Wang YM, Wang XJ, Huang GF. NiFe2O4/NiFeP heterostructure grown on nickel foam as an efficient electrocatalyst for water oxidation. ChemElectroChem, 2020, 7(19): 4047.

[32]

J.R. Ran, G.P. Gao, F.T. Li, T.Y. Ma, A.J. Du, and S.Z. Qiao, Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production, Nat. Commun., 8(2017), art. No. 13907.

[33]

Yan L, Zhang B, Wu SY, Yu JL. A general approach to the synthesis of transition metal phosphide nanoarrays on MXene nanosheets for pH-universal hydrogen evolution and alkaline overall water splitting. J. Mater. Chem. A, 2020, 8(28): 14234.

[34]

Jiang P, Liu Q, Liang YH, Tian JQ, Asiri AM, Sun XP. A cost-effective 3D hydrogen evolution cathode with high catalytic activity: FeP nanowire array as the active phase. Angew. Chem. Int. Ed., 2014, 53(47): 12855.

[35]

L.H. Liu, N. Li, M. Han, J.R. Han, and H.Y. Liang, Scalable synthesis of nanoporous high entropy alloys for electrocatalytic oxygen evolution, Rare Met., (2021), https://doi.org/10.1007/s12598-021-01760-x.

[36]

Pang Y, Xu WC, Zhu SL, Cui ZD, Liang YQ, Li ZY, Wu SL, Chang CT, Luo SY. Self-supporting amorphous nanoporous NiFeCoP electrocatalyst for efficient overall water splitting. J. Mater. Sci. Technol., 2021, 82, 96.

[37]

Yu JH, Cheng GZ, Luo W. Hierarchical NiFeP micro-flowers directly grown on Ni foam for efficient electrocatalytic oxygen evolution. J. Mater. Chem. A, 2017, 5(22): 11229.

[38]

Guan C, Xiao W, Wu HJ, Liu XM, Zang WJ, Zhang H, Ding J, Feng YP, Pennycook SJ, Wang J. Hollow Mo-doped CoP nanoarrays for efficient overall water splitting. Nano Energy, 2018, 48, 73.

[39]

M. Amiri, S.E. Moosavifard, S.S.H. Davarani, S.K. Kaverlavani, and M. Shamsipur, MnCoP hollow nanocubes as novel electrode material for asymmetric supercapacitors, Chem. Eng. J., 420(2021), art. No. 129910.

[40]

Han MK, Yin XW, Wu H, Hou ZX, Song CQ, Li XL, Zhang LT, Cheng LF. Ti3C2 MXenes with modified surface for high-performance electromagnetic absorption and shielding in the X-band. ACS Appl. Mater. Interfaces, 2016, 8(32): 21011.

[41]

Liu H, Ma X, Hu H, Pan YY, Zhao WN, Liu JL, Zhao XY, Wang JL, Yang ZX, Zhao QS, Ning H, Wu MB. Robust NiCoP/CoP heterostructures for highly efficient hydrogen evolution electrocatalysis in alkaline solution. ACS Appl. Mater. Interfaces, 2019, 11(17): 15528.

[42]

Y.H. Liu, N. Ran, R.Y. Ge, J.J. Liu, W.X. Li, Y.Y. Chen, L.Y. Feng, and R.C. Che, Porous Mn-doped cobalt phosphide nanosheets as highly active electrocatalysts for oxygen evolution reaction, Chem. Eng. J., 425(2021), art. No. 131642.

[43]

S.R. Xu, Y.S. Du, X. Liu, X. Yu, C.L. Teng, X.H. Cheng, Y.F. Chen, and Q. Wu, Three-dimensional (3D) hierarchical corallike Mn-doped Ni2P−Ni5P4/NF catalyst for efficient oxygen evolution, J. Alloys Compd., 826(2020), art. No. 154210.

[44]

Zhan K, Feng CH, Feng XT, Zhao D, Yue S, Li YJ, Jiao QZ, Li HS, Zhao Y. Iron-doped nickel cobalt phosphide nanoarrays with urchin-like structures as high-performance electrocatalysts for oxygen evolution reaction. ACS Sustainable Chem. Eng., 2020, 8(16): 6273.

[45]

Yue Q, Sun J, Chen S, Zhou Y, Li HJ, Chen Y, Zhang RY, Wei GF, Kang YJ. Hierarchical mesoporous MXene−NiCoP electrocatalyst for water-splitting. ACS Appl. Mater. Interfaces, 2020, 12(16): 18570.

[46]

Zhou LN, Yu L, Liu C, Li YJ. Electrocatalytic activity sites for the oxygen evolution reaction on binary cobalt and nickel phosphides. RSC Adv., 2020, 10(65): 39909.

[47]

Han JR, Hao S, Liu Z, Asiri AM, Sun XP, Xu YH. In situ development of amorphous Mn−Co−P shell on MnCo2O4 nanowire array for superior oxygen evolution electrocatalysis in alkaline media. Chem. Commun., 2018, 54(9): 1077.

AI Summary AI Mindmap
PDF

107

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/