Effect of Co2+ substitution in B-sites of the perovskite system on the phase formation, microstructure, electrical and magnetic properties of Bi0.5(Na0.68K0.22Li0.10)0.5TiO3 ceramics

Pamornnarumol Bhupaijit , Chonnarong Kaewsai , Tawat Suriwong , Supree Pinitsoontorn , Surirat Yotthuan , Naratip Vittayakorn , Theerachai Bongkarn

International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (9) : 1798 -1808.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (9) : 1798 -1808. DOI: 10.1007/s12613-021-2345-8
Article

Effect of Co2+ substitution in B-sites of the perovskite system on the phase formation, microstructure, electrical and magnetic properties of Bi0.5(Na0.68K0.22Li0.10)0.5TiO3 ceramics

Author information +
History +
PDF

Abstract

Bi0.5(Na0.68K0.22Li0.10)0.5Ti1−xCo xO3 lead-free perovskite ceramics (BNKLT−xCo, x = 0, 0.005, 0.010, 0.015 and 0.020) were fabricated via the solid-state combustion technique. A small-amount of Co2+ ion substitution into Ti-sites led to modification of the phase formation, microstructure, electrical and magnetic properties of BNKLT ceramics. Coexisting rhombohedral and tetragonal phases were observed in all samples using the X-ray diffraction (XRD) technique. The Rietveld refinement revealed that the rhombohedral phase increased from 39% to 88% when x increased from 0 to 0.020. The average grain size increased when x increased. With increasing x, more oxygen vacancies were generated, leading to asymmetry in the bipolar strain (SE) hysteresis loops. For the composition of x = 0.010, a high dielectric constant (ε m) of 5384 and a large strain (S max) of 0.23% with the normalized strain (d*33) of 460 pm·V−1 were achieved. The BNKLT−0Co ceramic showed diamagnetic behavior but all of the BNKLT−xCo ceramics exhibited paramagnetic behavior, measured at 50 K.

Keywords

BNKLT−xCo / dielectric / ferroelectric / strain / magnetic

Cite this article

Download citation ▾
Pamornnarumol Bhupaijit, Chonnarong Kaewsai, Tawat Suriwong, Supree Pinitsoontorn, Surirat Yotthuan, Naratip Vittayakorn, Theerachai Bongkarn. Effect of Co2+ substitution in B-sites of the perovskite system on the phase formation, microstructure, electrical and magnetic properties of Bi0.5(Na0.68K0.22Li0.10)0.5TiO3 ceramics. International Journal of Minerals, Metallurgy, and Materials, 2022, 29(9): 1798-1808 DOI:10.1007/s12613-021-2345-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

He LX, Gao M, Li CE, Zhu WM, Yan HX. Effects of Cr2O3 addition on the piezoelectric properties and microstructure of PbZrxTiy(Mg1/3Nb2/3)1−xyO3 ceramics. J. Eur. Ceram. Soc., 2001, 21(6): 703.

[2]

Choi JJ, Lee JH, Hahn BD, Yoon WH, Park DS. Co-firing of PZN−PZT/Ag multilayer actuator prepared by tape-casting method. Mater. Res. Bull., 2008, 43(2): 483.

[3]

Yamamoto T. Ferroelectric properties of the PbZrO3−PbTiO3 system. Jpn. J. Appl. Phys., 1996, 35(9S): 5104.

[4]

Li JM, Wang FF, Leung CM, Or SW, Tang YX, Chen XM, Wang T, Qin XM, Shi WZ. Large strain response in acceptor- and donor-doped Bi0.5Na0.5TiO3-based lead-free ceramics. J. Mater. Sci., 2011, 46(17): 5702.

[5]

Maqbool A, Hussain A, Malik RA, Zaman A, Song TK, Kim WJ, Kim MH. Dielectric and ferroelectric properties of Nb doped BNT-based relaxor ferroelectrics. Korean. J. Mater. Res., 2015, 25(7): 317.

[6]

Lee GJ, Kim BH, Yang SA, Park JJ, Bu SD, Lee MK. Piezoelectric and ferroelectric properties of (Bi,Na)TiO3−(Bi,Li)TiO3−(Bi,K)TiO3 ceramics for accelerometer application. J. Am. Ceram. Soc., 2016, 100(2): 678.

[7]

Cho JH, Jeong YH, Nam JH, Yun JS, Park YJ. Phase transition and piezoelectric properties of lead-free (Bi1/2Na1/2) TiO3−BaTiO3 ceramics. Ceram. Int., 2014, 40(6): 8419.

[8]

Dai YJ, Zhang XW, Chen KP. An approach to improve the piezoelectric property of (Bi0.5Na0.5)TiO3−(Bi0.5K0.5)TiO3−BaTiO3 lead-free ceramics. Int. J. Appl. Ceram. Technol., 2011, 8(2): 423.

[9]

Shieh J, Wu KC, Chen CS. Switching characteristics of MPB compositions of (Bi0.5Na0.5)TiO3−BaTiO3−(Bi0.5K0.5)TiO3 lead-free ferroelectric ceramics. Acta Mater., 2007, 55(9): 3081.

[10]

Sumang R, Cann DP, Kumar N, Bongkarn T. The influence of firing temperatures on the crystal structure, microstructure and dielectric properties of 0.68Bi0.5Na0.5TiO3−0.22Bi0.5 K0.5TiO3−0.10Bi0.5Li0.5TiO3Ceramics prepared via the combustion technique. Ferroelectrics, 2016, 490(1): 51.

[11]

Sasaki A, Chiba T, Mamiya Y, Otsuki E. Dielectric and piezoelectric properties of (Bi0.5Na0.5)TiO3−(Bi0.5K0.5)TiO3 systems. Jpn. J. Appl. Phys., 1999, 38(Part1): 5564.

[12]

D. Maurya, Y. Zhou, Y.K. Yan, and S. Priya, Synthesis mechanism of grain-oriented lead-free piezoelectric Na0.5Bi0.5TiO3−BaTiO3 ceramics with giant piezoelectric response, J. Mater. Chem. C, 1(2013), No. 11, art. No. 2102.

[13]

Seifert KTP, Jo W, Rödel J. Temperature-insensitive large strain of (Bi1/2Na1/2)TiO3−(Bi1/2k1/2)TiO3−(K0.5Na0.5)NbO3 lead-free piezoceramics. J. Am. Ceram. Soc., 2010, 93(5): 1392

[14]

P. Bhupaijit, P. Kidkhunthod, S.K. Gupta, N. Nuntawong, S. Prasertpalichat, S. Pinitsoontorn, M. Horprathum, and T. Bongkarn, Phase evolution, microstructure, electrical, and magnetic properties of Bi0.5(Na0.68K0.22Li0.10)0.5TiO3 ceramics with Fe3+ substitution, Phys. Status Solidi A, 217(2020), No. 12, art. No. 1900983.

[15]

K. Thangavelu, R. Ramadurai, and S. Asthana, Evidence for the suppression of intermediate anti-ferroelectric ordering and observation of hardening mechanism in Na1/2Bi1/2TiO3 ceramics through cobalt substitution, AIP Adv., 4(2014), No. 1, art. No. 017111.

[16]

Buntham S, Boonsong P, Jaiban P, Keawprak N, Watcharapasorn A. Effects of cobalt dopant on microstructure and electrical properties of Bi0.5Na0.5TiO3 ceramics. Chiang Mai J. Sci., 2018, 45(6): 2481

[17]

Parija B, Badapanda T, Sahoo P, Kar M, Kumar P, Panigrahi S. Structural and electromechanical study of Bi0.5Na0.5 TiO3−BaTiO3 solid-solutions. Process. Appl. Ceram., 2013, 7(2): 73.

[18]

Zuo RZ, Xu ZK, Li LT. Dielectric and piezoelectric properties of Fe2O3-doped (Na0.5K0.5)0.96Li0.04Nb0.86Ta0.1 Sb0.04O3 lead-free ceramics. J. Phys. Chem. Solids, 2008, 69(7): 1728.

[19]

Kumar P, Pattanaik M, Sonia Synthesis and characterizations of KNN ferroelectric ceramics near 50/50 MPB. Ceram. Int., 2013, 39(1): 65.

[20]

Verma A, Yadav AK, Khatun N, Kumar S, Jangir R, Srihari V, Reddy VR, Liu SW, Biring S, Sen S. Structural, dielectric and ferroelectric studies of thermally stable and efficient energy storage ceramic materials: (Na0.5−xKB0.5−xLax) TiO3. Ceram. Int., 2018, 44(16): 20178.

[21]

Chen XM, Ma HY, Pan WY, Pang M, Liu P, Zhou JP. Microstructure, dielectric and ferroelectric properties of (NaxBi0.5)0.94Ba0.06TiO3 lead-free ferroelectric ceramics: Effect of Na nonstoichiometry. Mater. Chem. Phys., 2012, 132(2–3): 368.

[22]

Mahmoud AER, Ezzeldien M, Parashar SKS. Enhancement of switching/un-switching leakage current and ferroelectric properties appraised by PUND method of (Ba1−xCax)TiO3 lead free piezoelectric near MPB. Solid State Sci., 2019, 93, 44.

[23]

Chen PY, Chen CS, Tu CS, Chen PH, Anthoniappen J. Effects of texture on microstructure, Raman vibration, and ferroelectric properties in 92.5%(Bi0.5Na0.5)TiO3−7.5%BaTiO3 ceramics. J. Eur. Ceram. Soc., 2016, 36(7): 1613.

[24]

Obilor U, Pascual-Gonzalez C, Murakami S, Reaney IM, Feteira A. Study of the temperature dependence of the giant electric field-induced strain in Nb-doped BNT-BT-BKT piezoceramics. Mater. Res. Bull., 2018, 97, 385.

[25]

Zhang QH, Zhao XY, Sun RB, Luo HS. Crystal growth and electric properties of lead-free NBT-BT at compositions near the morphotropic phase boundary. Phys. Status Solidi A, 2011, 208(5): 1012.

[26]

Hong IK, Han HS, Yoon CH, Ji HN, Tai WP, Lee JS. Strain enhancement in lead-free Bi0.5(Na0.78K0.22)0.5TiO3 ceramics by CaZrO3 substitution. J. Intell. Mater. Syst. Struct., 2013, 24(11): 1343.

[27]

Pham KN, Hussain A, Ahn CW, Ill WK, Jeong SJ, Lee JS. Giant strain in Nb-doped Bi0.5(Na0.82K0.18)0.5TiO3 lead-free electromechanical ceramics. Mater. Lett., 2010, 64(20): 2219.

[28]

Kushvaha DK, Rout SK, Tiwari B. Structural, piezoelectric and high density energy storage properties of lead-free BNKT-BCZT solid solution. J. Alloys Compd., 2019, 782, 270.

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/