Controlled crystal orientation of two-dimensional Ruddlesden—Popper halide perovskite films for solar cells

Jiuyao Du , Mengqi Zhang , Jianjun Tian

International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (1) : 49 -58.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (1) : 49 -58. DOI: 10.1007/s12613-021-2341-z
Invited Review

Controlled crystal orientation of two-dimensional Ruddlesden—Popper halide perovskite films for solar cells

Author information +
History +
PDF

Abstract

Metal halide perovskite solar cells have attracted considerable attention because of their high-power conversion efficiency and cost-effective solution-processable fabrication; however, they exhibit poor structural stability. Two-dimensional (2D) Ruddlesden—Popper (RP) perovskites could address the aforementioned issue and present excellent stability because of their hydrophobic organic spacer cations. However, the crystallographic orientation of 2D crystals should be perpendicular to the bottom substrates for charges to transport fast and be collected in solar cells. Moreover, controlling the crystallographic orientation of the 2D RP perovskites prepared by the solution process is difficult. Herein, we reviewed the progress of recent research regarding 2D RP perovskite films with the focus on the crystallographic orientation mechanism and orientation controlling methods. Furthermore, the current issues and prospects of 2D RP perovskites in the photovoltaic field were discussed to elucidate their development and application in the future.

Keywords

two-dimensional / Ruddlesden—Popper / crystallographic orientation / perovskite solar cells

Cite this article

Download citation ▾
Jiuyao Du, Mengqi Zhang, Jianjun Tian. Controlled crystal orientation of two-dimensional Ruddlesden—Popper halide perovskite films for solar cells. International Journal of Minerals, Metallurgy, and Materials, 2022, 29(1): 49-58 DOI:10.1007/s12613-021-2341-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Huang F, Li MJ, Siffalovic P, Cao GZ, Tian JJ. From scalable solution fabrication of perovskite films towards commercialization of solar cells. Energy Environ. Sci., 2019, 12(2): 518.

[2]

A.Q. Liu, C.H. Bi, R.Q. Guo, M.Q. Zhang, X.H. Qu, and J.J. Tian, Electroluminescence principle and performance improvement of metal halide perovskite light-emitting diodes, Adv. Opt. Mater., 9(2021), No. 18, art. No. 2002167.

[3]

Kim H, Lim KG, Lee TW. Planar heterojunction organometal halide perovskite solar cells: Roles of interfacial layers. Energy Environ. Sci., 2016, 9(1): 12.

[4]

C.H. Bi, Z.W. Yao, X.J. Sun, X.C. Wei, J.X. Wang, and J.J. Tian, Perovskite quantum dots with ultralow trap density by acid etching-driven ligand exchange for high luminance and stable pure-blue light-emitting diodes, Adv. Mater., 33(2021), No. 15, art. No. 2006722.

[5]

C.F. Liu, J.F. Yuan, R. Masse, et al., Interphases, interfaces, and surfaces of active materials in rechargeable batteries and perovskite solar cells, Adv. Mater., 33(2021), No. 22, art. No. 1905245.

[6]

V. D’Innocenzo, G. Grancini, M.J.P. Alcocer, et al., Excitons versus free charges in organo-lead tri-halide perovskites, Nat. Commun., 5(2014), art. No. 3586.

[7]

B. Li, D. Binks, G.Z. Cao, and J.J. Tian, Engineering halide perovskite crystals through precursor chemistry, Small, 15(2019), No. 47, art. No. 1903613.

[8]

Bi CH, Sun XJ, Huang X, et al. Stable CsPb1−xZnxI3 colloidal quantum dots with ultralow density of trap states for high-performance solar cells. Chem. Mater., 2020, 32(14): 6105.

[9]

Yang T, Zheng YP, Chou KC, Hou XM. Tunable fabrication of single-crystalline CsPbI3 nanobelts and their application as photodetectors. Int. J. Miner. Metall. Mater., 2021, 28(6): 1030.

[10]

De Quilettes DW, Vorpahl SM, Stranks SD, et al. Impact of microstructure on local carrier lifetime in perovskite solar cells. Science, 2015, 348(6235): 683.

[11]

J.H. Zheng, L.X. Zhu, Z.T. Shen, et al., Effects of the incorporation amount of CdS and Cd(SCN2H4)2Cl2 on the performance of perovskite solar cells, Int. J. Miner. Metall. Mater., (2021). DOI:https://doi.org/10.1007/s12613-021-2316-0

[12]

Zhang D, Yuan JF, Tian JJ. All-inorganic perovskite solar cells with efficiency >20%. Sci. China Mater., 2021, 64(10): 2624.

[13]

Zhang HY, Li R, Liu WW, Zhang M, Guo M. Research progress in lead-less or lead-free three-dimensional perovskite absorber materials for solar cells. Int. J. Miner. Metall. Mater., 2019, 26(4): 387.

[14]

Weber D. CH3NH3PbX3, ein Pb(II)-system mit kubischer perowskitstruktur/CH3NH3PbX3, a Pb(II)-system with cubic perovskite structure. Z. Naturforsch. B, 1978, 33(12): 1443.

[15]

Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc., 2009, 131(17): 6050.

[16]

H.S. Kim, C.R. Lee, J.H. Im, et al., Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%, Sci. Rep., 2(2012), art. No. 591.

[17]

Yu XZ, Qin Y, Peng Q. Probe decomposition of methylammonium lead iodide perovskite in N2 and O2 by in situ infrared spectroscopy. J. Phys. Chem. A, 2017, 121(6): 1169.

[18]

Xia YP, Wang PH, Shi SW, et al. Effect of oxygen partial pressure and transparent substrates on the structural and optical properties of ZnO thin films and their performance in energy harvesters. Int. J. Miner. Metall. Mater., 2017, 24(6): 675.

[19]

G. Tumen-Ulzii, C.J. Qin, D. Klotz, et al., Detrimental effect of unreacted PbI2 on the long-term stability of perovskite solar cells, Adv. Mater., 32(2020), No. 16, art. No. 1905035.

[20]

Wei HT, Chen SS, Zhao JJ, Yu ZH, Huang JS. Is formamidinium always more stable than methylammonium?. Chem. Mater., 2020, 32(6): 2501.

[21]

McGovern L, Koschany I, Grimaldi G, Muscarella LA, Ehrler B. Grain size influences activation energy and migration pathways in MAPbBr3 perovskite solar cells. J. Phys. Chem. Lett., 2021, 12(9): 2423.

[22]

P. Chen, Y. Bai, S.C. Wang, M.Q. Lyu, J.H. Yun, and L.Z. Wang, In situ growth of 2D perovskite capping layer for stable and efficient perovskite solar cells, Adv. Funct. Mater., 28(2018), No. 17, art. No. 1706923.

[23]

Zhuang J, Mao P, Luan YG, et al. Interfacial passivation for perovskite solar cells: The effects of the functional group in phenethylammonium iodide. ACS Energy Lett., 2019, 4(12): 2913.

[24]

C.L. Zhang, S.H. Wu, L.M. Tao, et al., Fabrication strategy for efficient 2D/3D perovskite solar cells enabled by diffusion passivation and strain compensation, Adv. Energy Mater., 10(2020), No. 43, art. No. 2002004.

[25]

Wu YH, Ding Y, Liu XY, et al. Ambient stable FAPbI3-based perovskite solar cells with a 2D-EDAPbI4 thin capping layer. Sci. China Mater., 2020, 63(1): 47.

[26]

Zheng HY, Dai SY, Zhou KX, et al. New-type highly stable 2D/3D perovskite materials: The effect of introducing ammonium cation on performance of perovskite solar cells. Sci. China Mater., 2019, 62(4): 508.

[27]

Liu YH, Akin S, Hinderhofer A, et al. Stabilization of highly efficient and stable phase-pure FAPbI3 perovskite solar cells by molecularly tailored 2D-overlayers. Angew. Chem. Int. Ed., 2020, 59(36): 15688.

[28]

C.T. Zuo, A.D. Scully, W.L. Tan, et al, Crystallisation control of drop-cast quasi-2D/3D perovskite layers for efficient solar cells, Commun. Mater., 1(2020), art. No. 33.

[29]

Li Y, Milić JV, Ummadisingu A, et al. Bifunctional organic spacers for formamidinium-based hybrid Dion—Jacobson two-dimensional perovskite solar cells. Nano Lett., 2019, 19(1): 150.

[30]

Cohen BE, Li YM, Meng QB, Etgar L. Dion—Jacobson two-dimensional perovskite solar cells based on benzene dimethanammonium cation. Nano Lett., 2019, 19(4): 2588.

[31]

F.Z. Li, J. Zhang, S.B. Jo, et al., Vertical orientated Dion—Jacobson quasi-2D perovskite film with improved photovoltaic performance and stability, Small Methods, 4(2020), No. 5, art. No. 1900831.

[32]

Lu D, Lv GW, Xu ZY, Dong YX, Ji XF, Liu YS. Thiophene-based two-dimensional Dion—Jacobson perovskite solar cells with over 15% efficiency. J. Am. Chem. Soc., 2020, 142(25): 11114.

[33]

H.T. Wu, X.M. Lian, S.X. Tian, et al., Additive assisted hotcasting free fabrication of Dion-Jacobson 2D perovskite solar cell with efficiency beyond 16%, Sol. RRL, 4(2020), No. 7, art. No. 2000087.

[34]

Zhao WD, Dong QS, Zhang JW, et al. Asymmetric alkyl diamine based Dion—Jacobson low-dimensional perovskite solar cells with efficiency exceeding 15%. J. Mater. Chem. A, 2020, 8(19): 9919.

[35]

H. Wang, Z.T. Qin, J.S. Xie, et al., Efficient slantwise aligned Dion—Jacobson phase perovskite solar cells based on trans-1, 4-cyclohexanediamine, Small, 16(2020), No. 42, art. No. 2003098.

[36]

J. Kim, W. Lee, K. Cho, et al., Crystallinity-dependent device characteristics of polycrystalline 2D n = 4 Ruddlesden—Popper perovskite photodetectors, Nanotechnol., 32(2021), No. 18, art. No. 185203.

[37]

Hwang B, Park Y, Lee JS. Impact of grain size on the optoelectronic performance of 2D Ruddlesden—Popper perovskite-based photodetectors. J. Mater. Chem. C, 2021, 9(1): 110.

[38]

Jang G, Ma S, Kwon HC, et al. Elucidation of the formation mechanism of highly oriented multiphase Ruddlesden—Popper perovskite solar cells. ACS Energy Lett., 2021, 6(1): 249.

[39]

J.S. Shi, X. Jin, Y.Z. Wu, and M. Shao, Mixed bulky cations for efficient and stable Ruddlesden—Popper perovskite solar cells, APL Mater., 8(2020), No. 10, art. No. 101102.

[40]

Tang XL, Wang XY, Hu T, et al. Concerted regulation on vertical orientation and film quality of two-dimensional Ruddlesden—Popper perovskite layer for efficient solar cells. Sci. China Chem., 2020, 63(11): 1675.

[41]

J.M. Yang, S.B. Xiong, J.N. Song, et al., Energetics and energy loss in 2D Ruddlesden—Popper perovskite solar cells, Adv. Energy Mater., 10(2020), No. 23, art. No. 2000687.

[42]

Y. Qin, H.J. Zhong, J.J. Intemann, et al., Coordination engineering of single-crystal precursor for phase control in Ruddlesden—Popper perovskite solar cells, Adv. Energy Mater., 10(2020), No. 16, art. No. 1904050.

[43]

Ruddlesden SN, Popper P. New compounds of the K2NIF4 type. Acta Cryst., 1957, 10(8): 538.

[44]

Smith IC, Hoke ET, Solis-Ibarra D, McGehee MD, Karunadasa HI. A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. Angew. Chem. Int. Ed., 2014, 53(42): 11232.

[45]

T. Zhang, M.I. Dar, G. Li, et al., Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI3 perovskite phase for high-efficiency solar cells, Sci. Adv., 3(2017), No. 9, art. No. e1700841.

[46]

Etgar L. The merit of perovskite’s dimensionality; can this replace the 3D halide perovskite. Energy Environ. Sci., 2018, 11(2): 234.

[47]

S. Yang, Y. Wang, P.R. Liu, Y.B. Cheng, H.J. Zhao, and H.G. Yang, Functionalization of perovskite thin films with moisture-tolerant molecules, Nat. Energy, 1(2016), art. No. 15016.

[48]

Jung HJ, Stompus CC, Kanatzidis MG, Dravid VP. Self-passivation of 2D Ruddlesden—Popper perovskite by polytypic surface PbI2 encapsulation. Nano Lett., 2019, 19(9): 6109.

[49]

Lin Y, Bai Y, Fang YJ, Wang Q, Deng YH, Huang JS. Suppressed ion migration in low-dimensional perovskites. ACS Energy Lett., 2017, 2(7): 1571.

[50]

Wu GB, Yang TH, Li X, et al. Molecular engineering for two-dimensional perovskites with photovoltaic efficiency exceeding 18%. Matter, 2021, 4(2): 582.

[51]

R. Yang, R.Z. Li, Y. Cao, et al, Oriented quasi-2D perovskites for high performance optoelectronic devices, Adv. Mater., 30(2018), No. 51, art. No. 1804771.

[52]

Y. Yang, C. Liu, O.A. Syzgantseva, et al., Defect suppression in oriented 2D perovskite solar cells with efficiency over 18% via rerouting crystallization pathway, Adv. Energy Mater., 11(2021), No. 1, art. No. 2002966.

[53]

H.T. Lai, D. Lu, Z.Y. Xu, N. Zheng, Z.Q. Xie, and Y.S. Liu, Organic-salt-assisted crystal growth and orientation of quasi-2D Ruddlesden—Popper perovskites for solar cells with efficiency over 19%, Adv. Mater., 32(2020), No. 33, art. No. 2001470.

[54]

Cao DH, Stoumpos CC, Farha OK, Hupp JT, Kanatzidis MG. 2D homologous perovskites as light-absorbing materials for solar cell applications. J. Am. Chem. Soc., 2015, 137(24): 7843.

[55]

J.Z. Li, J. Wang, Y.J. Zhang, et al., Fabrication of single phase 2D homologous perovskite microplates by mechanical exfoliation, 2D Mater., 5(2018), No. 2, art. No. 021001.

[56]

Quan LN, Yuan MJ, Comin R, et al. Ligand-stabilized reduced-dimensionality perovskites. J. Am. Chem. Soc., 2016, 138(8): 2649.

[57]

Stoumpos CC, Cao DH, Clark DJ, et al. Ruddlesden—Popper hybrid lead iodide perovskite 2D homologous semiconductors. Chem. Mater., 2016, 28(8): 2852.

[58]

Wei WJ, Jiang XX, Dong LY, et al. Regulating second-harmonic generation by van der Waals interactions in two-dimensional lead halide perovskite nanosheets. J. Am. Chem. Soc., 2019, 141(23): 9134.

[59]

Hong X, Ishihara T, Nurmikko AV. Dielectric confinement effect on excitons in PbI4-based layered semiconductors. Phys. Rev. B, 1992, 45(12): 6961.

[60]

Cao DH, Stoumpos CC, Yokoyama T, et al. Thin films and solar cells based on semiconducting two-dimensional Ruddlesden—Popper (CH3(CH2)3NH3)2(CH3NH3) n−1SnnI3n+1 perovskites. ACS Energy Lett., 2017, 2(5): 982.

[61]

A.Z. Chen, M. Shiu, J.H. Ma, et al, Origin of vertical orientation in two-dimensional metal halide perovskites and its effect on photovoltaic performance, Nat. Commun., 9(2018), art. No. 1336.

[62]

M. Konstantakou, D. Perganti, P. Falaras, and T. Stergiopoulos, Anti-solvent crystallization strategies for highly efficient perovskite solar cells, Crystals, 7(2017), No. 10, art. No. 291.

[63]

M. Zhang, Z.H. Wang, B. Zhou, et al., Green anti-solvent processed planar perovskite solar cells with efficiency beyond 19%, Sol. RRL, 2(2018), No. 2, art. No. 1700213.

[64]

Wang YF, Wu J, Zhang P, et al. Stitching triple cation perovskite by a mixed anti-solvent process for high performance perovskite solar cells. Nano Energy, 2017, 39, 616.

[65]

Prochowicz D, Tavakoli MM, Solanki A, et al. Understanding the effect of chlorobenzene and isopropanol anti-solvent treatments on the recombination and interfacial charge accumulation in efficient planar perovskite solar cells. J. Mater. Chem. A, 2018, 6(29): 14307.

[66]

Li Y, Wang JA, Yuan Y, Dong XD, Wang P. Anti-solvent dependent device performance in CH3NH3PbI3 solar cells: The role of intermediate phase content in the as-prepared thin films. Sustainable Energy Fuels, 2017, 1(5): 1041.

[67]

Y.X. Dong, D. Lu, Z.Y. Xu, H.T. Lai, and Y.S. Liu, 2-thiopheneformamidinium-based 2D Ruddlesden-Popper perovskite solar cells with efficiency of 16.72% and negligible hysteresis, Adv. Energy Mater., 10(2020), No. 28, art. No. 2000694.

[68]

Li MJ, Li B, Cao GZ, Tian JJ. Monolithic MAPbI3 films for high-efficiency solar cells via coordination and a heat assisted process. J. Mater. Chem. A, 2017, 5(40): 21313.

[69]

H.C. Liao, P.J. Guo, C.P. Hsu, et al., Enhanced efficiency of hot-cast large-area planar perovskite solar cells/modules having controlled chloride incorporation, Adv. Energy Mater., 7(2017), No. 8, art. No. 1601660.

[70]

Nie WY, Tsai H, Asadpour R, et al. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science, 2015, 347(6221): 522.

[71]

Wang Z, Liu XD, Lin YW, et al. Hot-substrate deposition of all-inorganic perovskite films for low-temperature processed high-efficiency solar cells. J. Mater. Chem. A, 2019, 7(6): 2773.

[72]

Wu GB, Zhou JY, Zhang JQ, et al. Management of the crystallization in two-dimensional perovskite solar cells with enhanced efficiency within a wide temperature range and high stability. Nano Energy, 2019, 58, 706.

[73]

Shin GS, Choi WG, Na S, Gökdemir FP, Moon T. Lead acetate based hybrid perovskite through hot casting for planar heterojunction solar cells. Electron. Mater. Lett., 2018, 14(2): 155.

[74]

Tsai H, Nie WY, Blancon JC, et al. High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells. Nature, 2016, 536(7616): 312.

[75]

Wang FD, Wang YY, Liu YH, Morrison PJ, Loomis RA, Buhro WE. Two-dimensional semiconductor nanocrystals: Properties, templated formation, and magic-size nanocluster intermediates. Acc. Chem. Res., 2015, 48(1): 13.

[76]

Riedinger A, Ott FD, Mule A, et al. An intrinsic growth instability in isotropic materials leads to quasi-two-dimensional nanoplatelets. Nat. Mater., 2017, 16(7): 743.

[77]

Quintero-Bermudez R, Gold-Parker A, Proppe AH, et al. Compositional and orientational control in metal halide perovskites of reduced dimensionality. Nat. Mater., 2018, 17(10): 900.

[78]

Shao SY, Duim H, Wang QQ, et al. Tuning the energetic landscape of Ruddlesden—Popper perovskite films for efficient solar cells. ACS Energy Lett., 2020, 5(1): 39.

[79]

Zhang J, Qin JJ, Wang MS, et al. Uniform permutation of quasi-2D perovskites by vacuum poling for efficient, high-fill-factor solar cells. Joule, 2019, 3(12): 3061.

[80]

Zhao XM, Liu TR, Kaplan AB, Yao C, Loo YL. Accessing highly oriented two-dimensional perovskite films via solvent-vapor annealing for efficient and stable solar cells. Nano Lett., 2020, 20(12): 8880.

[81]

X.Q. Zhang, G. Wu, W.F. Fu, et al., Orientation regulation of phenylethylammonium cation based 2D perovskite solar cell with efficiency higher than 11%, Adv. Energy Mater., 8(2018), No. 14, art. No. 1702498.

[82]

Fu WF, Wang J, Zuo LJ, et al. Two-dimensional perovskite solar cells with 14.1% power conversion efficiency and 0.68% external radiative efficiency. ACS Energy Lett., 2018, 3(9): 2086.

[83]

F. Huang, P. Siffalovic, B. Li, et al., Controlled crystallinity and morphologies of 2D Ruddlesden—Popper perovskite films grown without anti-solvent for solar cells, Chem. Eng. J., 394(2020), art. No. 124959.

[84]

Zheng F, Zuo CT, Niu MS, et al. Revealing the role of methylammonium chloride for improving the performance of 2D perovskite solar cells. ACS Appl. Mater. Interfaces, 2020, 12(23): 25980.

[85]

C.M.M. Soe, W.Y. Nie, C.C. Stoumpos, et al., Understanding film formation morphology and orientation in high member 2D Ruddlesden—Popper perovskites for high-efficiency solar cells, Adv. Energy Mater., 8(2018), No. 1, art. No. 1700979.

[86]

J. Qiu, Y.T. Zheng, Y.D. Xia, et al., Rapid crystallization for efficient 2D Ruddlesden—Popper (2DRP) perovskite solar cells, Adv. Funct. Mater., 29(2019), No. 47, art. No. 1806831.

[87]

Zhang X, Ren XD, Liu B, et al. Stable high efficiency two-dimensional perovskite solar cells via cesium doping. Energy Environ. Sci., 2017, 10(10): 2095.

[88]

Zhou N, Shen YH, Li L, et al. Exploration of crystallization kinetics in quasi two-dimensional perovskite and high performance solar cells. J. Am. Chem. Soc., 2018, 140(1): 459.

[89]

J.S. Shi, Y.R. Gao, X. Gao, et al., Fluorinated low-dimensional Ruddlesden—Popper perovskite solar cells with over 17% power conversion efficiency and improved stability, Adv. Mater., 31(2019), No. 37, art. No. 1901673.

[90]

Ren H, Yu SD, Chao LF, et al. Efficient and stable Ruddlesden—Popper perovskite solar cell with tailored interlayer molecular interaction. Nat. Photonics, 2020, 14(3): 154.

[91]

Y.N. Chen, Y. Sun, J.J. Peng, et al., Tailoring organic cation of 2D air-stable organometal halide perovskites for highly efficient planar solar cells, Adv. Energy Mater., 7(2017), No. 18, art. No. 1700162.

[92]

N. Zhou, B.L. Huang, M.Z. Sun, et al., The spacer cations interplay for efficient and stable layered 2D perovskite solar cells, Adv. Energy Mater., 10(2020), No. 1, art. No. 1901566.

[93]

Liang C, Gu H, Xia YD, et al. Two-dimensional Ruddlesden—Popper layered perovskite solar cells based on phase-pure thin films. Nat. Energy, 2021, 6(1): 38.

AI Summary AI Mindmap
PDF

168

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/