Research progress in interface modification and thermal conduction behavior of diamond/metal composites

Ping Zhu , Pingping Wang , Puzhen Shao , Xiu Lin , Ziyang Xiu , Qiang Zhang , Equo Kobayashi , Gaohui Wu

International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (2) : 200 -211.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (2) : 200 -211. DOI: 10.1007/s12613-021-2339-6
Invited Review

Research progress in interface modification and thermal conduction behavior of diamond/metal composites

Author information +
History +
PDF

Abstract

Diamond/metal composites are widely used in aerospace and electronic packaging fields due to their outstanding high thermal conductivity and low expansion. However, the difference in chemical properties leads to interface incompatibility between diamond and metal, which has a considerable impact on the performance of the composites. To improve the interface compatibility between diamond and metal, it is necessary to modify the interface of composites. This paper reviews the experimental research on interface modification and the application of computational simulation in diamond/metal composites. Combining computational simulation with experimental methods is a promising way to promote diamond/metal composite interface modification research.

Keywords

diamond/metal / interface modification / thermal conductivity / computational simulation

Cite this article

Download citation ▾
Ping Zhu, Pingping Wang, Puzhen Shao, Xiu Lin, Ziyang Xiu, Qiang Zhang, Equo Kobayashi, Gaohui Wu. Research progress in interface modification and thermal conduction behavior of diamond/metal composites. International Journal of Minerals, Metallurgy, and Materials, 2022, 29(2): 200-211 DOI:10.1007/s12613-021-2339-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Li S, Zheng QY, YC, Liu XY, Wang XQ, Huang PY, Cahill DG, B. High thermal conductivity in cubic boron arsenide crystals. Science, 2018, 361(6402): 579.

[2]

C.L. Wei, X. Xu, B.Z. Wei, J.G. Cheng, and P.Q. Chen, Effect of diamond surface treatment on microstructure and thermal conductivity of diamond/W—30Cu composites prepared by microwave sintering, Diam. Relat. Mater., 104(2020), art. No. 107760.

[3]

Garman PD, Johnson JM, Talesara V, Yang H, Zhang D, Castro J, Lu W, Hwang J, Lee LJ. Silicon oxycarbide accelerated chemical vapor deposition of graphitic networks on ceramic substrates for thermal management enhancement. ACS Appl. Nano Mater., 2019, 2(1): 452.

[4]

Mei Y, Shao PZ, Sun M, Chen GQ, Hussain M, Huang FL, Zhang Q, Gao XS, Pei YY, Zhong SJ, Wu GH. Deformation treatment and microstructure of graphene-re-inforced metal matrix nanocomposites: A review of graphene post-dispersion. Int. J. Miner. Metall. Mater., 2020, 27(7): 888.

[5]

Shahsavar S, Ketabchi M, Bagherzadeh S. Fabrication of robust aluminum-carbon nanotube composites using ultrasonic assembly and rolling process. Int. J. Miner. Metall. Mater., 2021, 28(1): 160.

[6]

Wort CJH, Balmer RS. Diamond as an electronic material. Mater. Today, 2008, 11(1–2): 22.

[7]

Weidenmann KA, Tavangar R, Weber L. Rigidity of diamond reinforced metals featuring high particle contents. Compos. Sci. Technol., 2009, 69(10): 1660.

[8]

Bai GZ, Zhang YJ, Liu XY, Dai JJ, Wang XT, Zhang HL. High-temperature thermal conductivity and thermal cycling behavior of Cu-B/diamond composites. IEEE Trans. Compon. Packag. Manuf. Technol., 2020, 10(4): 626.

[9]

Tan ZQ, Xiong DB, Fan GL, Chen ZZ, Guo Q, Guo CP, Ji G, Li ZQ, Zhang D. Enhanced thermal conductivity of diamond/aluminum composites through tuning diamond particle dispersion. J. Mater. Sci., 2018, 53(9): 6602.

[10]

Liang JB, Yamajo S, Kuball M, Shigekawa N. Room-temperature direct bonding of diamond and Al. Scripta Mater., 2019, 159, 58.

[11]

Shi QY, Liu ZQ, Wu D, Zhang H, Ni DR, Suganuma K. Fabrication of Ni-P coating film on diamond/Al composite and its soldering reliability. J. Mater. Sci.: Mater. Electron., 2018, 29(10): 8371

[12]

Chen GQ, Yang WS, Xin L, Wang PP, Liu SF, Qiao J, Hu FJ, Zhang Q, Wu GH. Mechanical properties of Al matrix composite reinforced with diamond particles with W coatings prepared by the magnetron sputtering method. J. Alloys Compd., 2018, 735, 777.

[13]

X.Y. Liu, F.Y. Sun, L.H. Wang, Z.X. Wu, X.T. Wang, J.G. Wang, M.J. Kim, and H.L. Zhang, The role of Cr interlayer in determining interfacial thermal conductance between Cu and diamond, Appl. Surf. Sci., 515(2020), art. No. 146046.

[14]

Chang G, Sun FY, Wang LH, Che ZX, Wang XT, Wang JG, Kim MJ, Zhang HL. Regulated interfacial thermal conductance between Cu and diamond by a TiC interlayer for thermal management applications. ACS Appl. Mater. Interfaces, 2019, 11(29): 26507.

[15]

Monje IE, Louis E, Molina JM. Optimizing thermal conductivity in gas-pressure infiltrated aluminum/diamond composites by precise processing control. Compos. A: Appl. Sci. Manuf., 2013, 48, 9.

[16]

Wu YP, Luo JB, Wang Y, Wang GL, Wang H, Yang ZQ, Ding GF. Critical effect and enhanced thermal conductivity of Cu—diamond composites reinforced with various diamond prepared by composite electroplating. Ceram. Int., 2019, 45(10): 13225.

[17]

C. Edtmaier, J. Segl, R. Koos, M. Schöbel, and C. Feldbaumer, Characterization of interfacial bonding strength at Al(Si)/diamond interfaces by neutron diffraction: Effect of diamond surface termination and processing conditions, Diam. Relat. Mater., 106(2020), art. No. 107842.

[18]

Liang Z, Tsai HL. Effect of thin film confined between two dissimilar solids on interfacial thermal resistance. J. Phys. Condens. Matter, 2011, 23(49): 495303.

[19]

Majumdar A, Reddy P. Role of electron-phonon coupling in thermal conductance of metal-nonmetal interfaces. Appl. Phys. Lett., 2004, 84(23): 4768.

[20]

Tan ZQ, Li ZQ, Xiong DB, Fan GL, Ji G, Zhang D. A predictive model for interfacial thermal conductance in surface metallized diamond aluminum matrix composites. Mater. Des., 2014, 55, 257.

[21]

X.Y. Li, W. Park, Y. Wang, Y.P. Chen, and X.L. Ruan, Reducing interfacial thermal resistance between metal and dielectric materials by a metal interlayer, J. Appl. Phys., 125(2019), No. 4, art. No. 045302.

[22]

Ju BY, Yang WS, Zhang Q, Hussain M, Xiu ZY, Qiao J, Wu GH. Research progress on the characterization and repair of graphene defects. Int. J. Miner. Metall. Mater., 2020, 27(9): 1179.

[23]

Cui Y, Xu SB, Zhang L, Guo S. Microstructure and thermal properties of diamond-Al composite fabricated by pressureless metal infiltration. Adv. Mater. Res., 2010, 150–151, 1110.

[24]

Wu JH, Zhang HL, Zhang Y, Li JW, Wang XT. Effect of copper content on the thermal conductivity and thermal expansion of Al-Cu/diamond composites. Mater. Des., 2012, 39, 87.

[25]

Schubert T, Trindade B, Weißgärber T, Kieback B. Interfacial design of Cu-based composites prepared by powder metallurgy for heat sink applications. Mater. Sci. Eng. A, 2008, 475(1–2): 39.

[26]

Weber L, Tavangar R. On the influence of active element content on the thermal conductivity and thermal expansion of Cu-X (X = Cr, B) diamond composites. Scripta Mater., 2007, 57(11): 988.

[27]

Wang LH, Li JW, Bai GZ, Li N, Wang XT, Zhang HL, Wang JG, Kim MJ. Interfacial structure evolution and thermal conductivity of Cu-Zr/diamond composites prepared by gas pressure infiltration. J. Alloys Compd., 2019, 781, 800.

[28]

Tan ZQ, Li ZQ, Fan GL, Guo Q, Kai XZ, Ji G, Zhang LT, Zhang D. Enhanced thermal conductivity in diamond/aluminum composites with a tungsten interface nanolayer. Mater. Des., 2013, 47, 160.

[29]

Che ZF, Wang QX, Wang LH, Li JW, Zhang HL, Zhang Y, Wang XT, Wang JG, Kim MJ. Interfacial structure evolution of Ti-coated diamond particle reinforced Al matrix composite produced by gas pressure infiltration. Compos. B: Eng., 2017, 113, 285.

[30]

Ji G, Tan ZQ, Lu YG, Schryvers D, Li ZQ, Zhang D. Heterogeneous interfacial chemical nature and bonds in a Wcoated diamond/Al composite. Mater. Charact., 2016, 112, 129.

[31]

Ma SD, Zhao NQ, Shi CS, Liu EZ, He CN, He F, Ma LY. Mo2C coating on diamond: Different effects on thermal conductivity of diamond/Al and diamond/Cu composites. Appl. Surf. Sci., 2017, 402, 372.

[32]

Che ZF, Li JW, Wang QX, Wang LH, Zhang HL, Zhang Y, Wang XT, Wang JG, Kim MJ. The formation of atomic-level interfacial layer and its effect on thermal conductivity of W-coated diamond particles reinforced Al matrix composites. Compos. A: Appl. Sci. Manuf., 2018, 107, 164.

[33]

Yang WL, Peng K, Zhu JJ, Li DY, Zhou LP. Enhanced thermal conductivity and stability of diamond/aluminum composite by introduction of carbide interface layer. Diam. Relat. Mater., 2014, 46, 35.

[34]

Zhang HD, Zhang JJ, Liu Y, Zhang F, Fan TX, Zhang D. Unveiling the interfacial configuration in diamond/Cu composites by using statistical analysis of metallized diamond surface. Scripta Mater., 2018, 152, 84.

[35]

Ren SB, Shen XY, Guo CY, Liu N, Zang JB, He XB, Qu XH. Effect of coating on the microstructure and thermal conductivities of diamond-Cu composites prepared by powder metallurgy. Compos. Sci. Technol., 2011, 71(13): 1550.

[36]

Wang LH, Li JW, Che ZF, Wang XT, Zhang HL, Wang JG, Kim MJ. Combining Cr pre-coating and Cr alloying to improve the thermal conductivity of diamond particles reinforced Cu matrix composites. J. Alloys Compd., 2018, 749, 1098.

[37]

Yuan MY, Tan ZQ, Fan GL, Xiong DB, Guo Q, Guo CP, Li ZQ, Zhang D. Theoretical modelling for interface design and thermal conductivity prediction in diamond/Cu composites. Diam. Relat. Mater., 2018, 81, 38.

[38]

Abyzov AM, Kruszewski MJ, Ciupiński L, Mazurkiewicz M, Michalski A, Kurzydłowski KJ. Diamond—tungsten based coating-copper composites with high thermal conductivity produced by Pulse Plasma Sintering. Mater. Des., 2015, 76, 97.

[39]

Pan YP, He XB, Ren SB, Wu M, Qu XH. High thermal conductivity of diamond/copper composites produced with Cu-ZrC double-layer coated diamond particles. J. Mater. Sci., 2018, 53(12): 8978.

[40]

Zou HH, Bai H, Yu JH, Wang Y, Liao QL, Nishimura K, Zeng LM, Jiang N. Architecting graphene nanowalls on diamond powder surface. Compos. B: Eng., 2015, 73, 57.

[41]

Cao HJ, Tan ZQ, Lu MH, Ji G, Yan XJ, Di C, Yuan MY, Guo Q, Su YS, Addad A, Li ZQ, Xiong DB. Graphene interlayer for enhanced interface thermal conductance in metal matrix composites: An approach beyond surface metallization and matrix alloying. Carbon, 2019, 150, 60.

[42]

X.Z. Wu, L.Y. Li, W. Zhang, M.X. Song, W.L. Yang, and K. Peng, Effect of surface roughening on the interfacial thermal conductance of diamond/copper composites, Diam. Relat. Mater., 98(2019), art. No. 107467.

[43]

L. Zhang, Q.P. Wei, J.J. An, L. Ma, K.C. Zhou, W.T. Ye, Z.M. Yu, X.P. Gan, C.T. Lin, and J.T. Luo, Construction of 3D interconnected diamond networks in Al-matrix composite for high-efficiency thermal management, Chem. Eng. J., 380(2020), art. No. 122551.

[44]

Z.N. Xie, H. Guo, X.M. Zhang, and S.H. Huang, Enhancing thermal conductivity of Diamond/Cu composites by regulating distribution of bimodal diamond particles, Diam. Relat. Mater., 100(2019), art. No. 107564.

[45]

Yoshida K, Morigami H. Thermal properties of diamond/copper composite material. Microelectron. Reliab., 2004, 44(2): 303.

[46]

Chen H, Jia CC, Li SJ, Jia X, Yang X. Selective interfacial bonding and thermal conductivity of diamond/Cu-alloy composites prepared by HPHT technique. Int. J. Miner. Metall. Mater., 2012, 19(4): 364.

[47]

Chu K, Jia CC, Guo H, Li WS. On the thermal conductivity of Cu-Zr/diamond composites. Mater. Des., 2013, 45, 36.

[48]

Chung CY, Lee MT, Tsai MY, Chu CH, Lin SJ. High thermal conductive diamond/Cu-Ti composites fabricated by pressureless sintering technique. Appl. Therm. Eng., 2014, 69(1–2): 208.

[49]

Mańkowski P, Dominiak A, Domański R, Kruszewski MJ, Ciupiński Ł. Thermal conductivity enhancement of copper—diamond composites by sintering with chromium additive. J. Therm. Anal. Calorim., 2014, 116(2): 881.

[50]

Grzonka J, Kruszewski MJ, Rosiński M, Ciupiński Ł, Michalski A, Kurzydłowski KJ. Interfacial microstructure of copper/diamond composites fabricated via a powder metallurgical route. Mater. Charact., 2015, 99, 188.

[51]

Wang LH, Li JW, Catalano M, Bai GZ, Li N, Dai JJ, Wang XT, Zhang HL, Wang JG, Kim MJ. Enhanced thermal conductivity in Cu/diamond composites by tailoring the thickness of interfacial TiC layer. Compos. A: Appl. Sci. Manuf., 2018, 113, 76.

[52]

Tao PF, Bai H, Xue C, JL, Zhao ZY. Microstructure and thermal properties of diamond/Al composites. Cemented Carbide, 2016, 33(2): 102

[53]

Guo CY, He XB, Ren SB, Qu XH. Effect of (0–40) wt. % Si addition to Al on the thermal conductivity and thermal expansion of diamond/Al composites by pressure infiltration. J. Alloys Compd., 2016, 664, 777.

[54]

Guo CY, He XB, Ren SB, Qu XH. Thermal properties of diamond/Al composites by pressure infiltration: Comparison between methods of coating Ti onto diamond surfaces and adding Si into Al matrix. Rare Met., 2016, 35(3): 249.

[55]

Cui W, Xu H, Chen JH, Ren SB, He XB, Qu XH. Effect of sintering on the relative density of Cr-coated diamond/Cu composites prepared by spark plasma sintering. Int. J. Miner. Metall. Mater., 2016, 23(6): 716.

[56]

Ciupiński Ł, Kruszewski MJ, Grzonka J, Chmielewski M, Zielińsk R, Moszczyńska D, Michalski A. Design of interfacial Cr3C2 carbide layer via optimization of sintering parameters used to fabricate copper/diamond composites for thermal management applications. Mater. Des., 2017, 120, 170.

[57]

Y.H. Sun, L.K. He, C. Zhang, Q.N. Meng, B.C. Liu, K. Gao, M. Wen, and W.T. Zheng, Enhanced tensile strength and thermal conductivity in copper diamond composites with B4C coating, Sci. Rep., 7(2017), art. No. 10727.

[58]

Jia JH, Bai SX, Xiong DG, Wang J, Chang J. Effect of tungsten based coating characteristics on microstructure and thermal conductivity of diamond/Cu composites prepared by pressueless infiltration. Ceram. Int., 2019, 45(8): 10810.

[59]

S.H. Huang, H. Guo, Z. Zhang, X.M. Zhang, H.F. Xie, Z.N. Xie, L.J. Peng, and X.J. Mi, Comparative study on the properties and microscopic mechanism of Ti coating and W coating diamond-copper composites, Mater. Res. Express, 7(2020), No. 7, art. No. 076517.

[60]

Lei L, Bolzoni L, Yang F. High thermal conductivity and strong interface bonding of a hot-forged Cu/Ti-coated-diamond composite. Carbon, 2020, 168, 553.

[61]

Y.Q. Li, H.Y. Zhou, C.J. Wu, Z. Yin, C. Liu, Y. Huang, J.Y. Liu, and Z.L. Shi, The interface and fabrication process of diamond/Cu composites with nanocoated diamond for heat sink applications, Metals, 11(2021), No. 2, art. No. 196.

[62]

Xue C, Yu JK. Enhanced thermal conductivity in diamond/aluminum composites: Comparison between the methods of adding Ti into Al matrix and coating Ti onto diamond surface. Surf. Coat. Technol., 2013, 217, 46.

[63]

Zhang Y, Li JW, Zhao LL, Wang XT. Optimisation of high thermal conductivity Al/diamond composites produced by gas pressure infiltration by controlling infiltration temperature and pressure. J. Mater. Sci., 2015, 50(2): 688.

[64]

Xin L, Tian X, Yang WS, Chen GQ, Qiao J, Hu FJ, Zhang Q, Wu GH. Enhanced stability of the Diamond/Al composites by W coatings prepared by the magnetron sputtering method. J. Alloys Compd., 2018, 763, 305.

[65]

Zhang C, Wang RC, Cai ZY, Peng CQ, Wang NG. Low-temperature densification of diamond/Cu composite prepared from dual-layer coated diamond particles. J. Mater. Sci.: Mater. Electron., 2015, 26(1): 185

[66]

Zhang C, Wang RC, Cai ZY, Peng CQ, Feng Y, Zhang L. Effects of dual-layer coatings on microstructure and thermal conductivity of diamond/Cu composites prepared by vacuum hot pressing. Surf. Coat. Technol., 2015, 277, 299.

[67]

Wu XZ, Wan DQ, Zhang W, Song MX, Peng K. Constructing efficient heat transfer channels at the interface of Diamond/Cu composites. Compos. Interfaces, 2021, 28(6): 625.

[68]

Tavangar R, Molina JM, Weber L. Assessing predictive schemes for thermal conductivity against diamond-reinforced silver matrix composites at intermediate phase contrast. Scripta Mater., 2007, 56(5): 357.

[69]

Hasselman DPH, Johnson LF. Effective thermal conductivity of composites with interfacial thermal barrier resistance. J. Compos. Mater., 1987, 21(6): 508.

[70]

Mohr M, Brühne K, Fecht HJ. Thermal conductivity of nanocrystalline diamond films grown by hot filament chemical vapor deposition. Phys. Status Solidi A, 2016, 213(10): 2590.

[71]

Chang G, Sun FY, Duan JL, Che ZF, Wang XT, Wang JG, Kim MJ, Zhang HL. Effect of Ti interlayer on interfacial thermal conductance between Cu and diamond. Acta Mater., 2018, 160, 235.

[72]

G. Chang, F.Y. Sun, L.H. Wang, Y. Zhang, X.T. Wang, J.G. Wang, M.J. Kim, and H.L. Zhang, Mo-interlayer-mediated thermal conductance at Cu/diamond interface measured by time-domain thermoreflectance, Compos. A: Appl. Sci. Manuf., 135(2020), art. No. 105921.

[73]

Bhandari U, Zhang CY, Guo SM, Yang SZ. First-principles study on the mechanical and thermodynamic properties of MoNbTaTiW. Int. J. Miner. Metall. Mater., 2020, 27(10): 1398.

[74]

X.R. Shi, S.M. Huang, Y. Huang, Y.J. Zhang, S.B. Zong, S.S. Xu, Y.Y. Chen, and P. Ma, Atomic structures and electronic properties of Ni or N modified Cu/diamond interface, J. Phys.: Condens. Matter, 32(2020), No. 22, art. No. 225001.

[75]

C. Monachon, G. Schusteritsch, E. Kaxiras, and L. Weber, Qualitative link between work of adhesion and thermal conductance of metal/diamond interfaces, J. Appl. Phys., 115(2014), No. 12, art. No. 123509.

[76]

H.N. Xie, Y.T. Chen, T.B. Zhang, N.Q. Zhao, C.S. Shi, C.N. He, and E.Z. Liu, Adhesion, bonding and mechanical properties of Mo doped diamond/Al (Cu) interfaces: A first principles study, Appl. Surf. Sci., 527(2020), art. No. 146817.

[77]

Chen L, Chen ST, Hou Y. Understanding the thermal conductivity of diamond/copper composites by first-principles calculations. Carbon, 2019, 148, 249.

[78]

Zhang C, Cai ZY, Tang YG, Wang RC, Peng CQ, Feng Y. Microstructure and thermal behavior of diamond/Cu composites: Effects of surface modification. Diam. Relat. Mater., 2018, 86, 98.

[79]

Z.B. Sun, Z.R. Tian, L. Weng, Y. Liu, J.J. Zhang, and T.X. Fan, The effect of thermal mismatch on the thermal conductance of Al/SiC and Cu/diamond composites, J. Appl. Phys., 127(2020), No. 4, art. No. 045101.

AI Summary AI Mindmap
PDF

109

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/