Research progress in interface modification and thermal conduction behavior of diamond/metal composites
Ping Zhu , Pingping Wang , Puzhen Shao , Xiu Lin , Ziyang Xiu , Qiang Zhang , Equo Kobayashi , Gaohui Wu
International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (2) : 200 -211.
Research progress in interface modification and thermal conduction behavior of diamond/metal composites
Diamond/metal composites are widely used in aerospace and electronic packaging fields due to their outstanding high thermal conductivity and low expansion. However, the difference in chemical properties leads to interface incompatibility between diamond and metal, which has a considerable impact on the performance of the composites. To improve the interface compatibility between diamond and metal, it is necessary to modify the interface of composites. This paper reviews the experimental research on interface modification and the application of computational simulation in diamond/metal composites. Combining computational simulation with experimental methods is a promising way to promote diamond/metal composite interface modification research.
diamond/metal / interface modification / thermal conductivity / computational simulation
| [1] |
|
| [2] |
C.L. Wei, X. Xu, B.Z. Wei, J.G. Cheng, and P.Q. Chen, Effect of diamond surface treatment on microstructure and thermal conductivity of diamond/W—30Cu composites prepared by microwave sintering, Diam. Relat. Mater., 104(2020), art. No. 107760. |
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
X.Y. Liu, F.Y. Sun, L.H. Wang, Z.X. Wu, X.T. Wang, J.G. Wang, M.J. Kim, and H.L. Zhang, The role of Cr interlayer in determining interfacial thermal conductance between Cu and diamond, Appl. Surf. Sci., 515(2020), art. No. 146046. |
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
C. Edtmaier, J. Segl, R. Koos, M. Schöbel, and C. Feldbaumer, Characterization of interfacial bonding strength at Al(Si)/diamond interfaces by neutron diffraction: Effect of diamond surface termination and processing conditions, Diam. Relat. Mater., 106(2020), art. No. 107842. |
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
X.Y. Li, W. Park, Y. Wang, Y.P. Chen, and X.L. Ruan, Reducing interfacial thermal resistance between metal and dielectric materials by a metal interlayer, J. Appl. Phys., 125(2019), No. 4, art. No. 045302. |
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
X.Z. Wu, L.Y. Li, W. Zhang, M.X. Song, W.L. Yang, and K. Peng, Effect of surface roughening on the interfacial thermal conductance of diamond/copper composites, Diam. Relat. Mater., 98(2019), art. No. 107467. |
| [43] |
L. Zhang, Q.P. Wei, J.J. An, L. Ma, K.C. Zhou, W.T. Ye, Z.M. Yu, X.P. Gan, C.T. Lin, and J.T. Luo, Construction of 3D interconnected diamond networks in Al-matrix composite for high-efficiency thermal management, Chem. Eng. J., 380(2020), art. No. 122551. |
| [44] |
Z.N. Xie, H. Guo, X.M. Zhang, and S.H. Huang, Enhancing thermal conductivity of Diamond/Cu composites by regulating distribution of bimodal diamond particles, Diam. Relat. Mater., 100(2019), art. No. 107564. |
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
Y.H. Sun, L.K. He, C. Zhang, Q.N. Meng, B.C. Liu, K. Gao, M. Wen, and W.T. Zheng, Enhanced tensile strength and thermal conductivity in copper diamond composites with B4C coating, Sci. Rep., 7(2017), art. No. 10727. |
| [58] |
|
| [59] |
S.H. Huang, H. Guo, Z. Zhang, X.M. Zhang, H.F. Xie, Z.N. Xie, L.J. Peng, and X.J. Mi, Comparative study on the properties and microscopic mechanism of Ti coating and W coating diamond-copper composites, Mater. Res. Express, 7(2020), No. 7, art. No. 076517. |
| [60] |
|
| [61] |
Y.Q. Li, H.Y. Zhou, C.J. Wu, Z. Yin, C. Liu, Y. Huang, J.Y. Liu, and Z.L. Shi, The interface and fabrication process of diamond/Cu composites with nanocoated diamond for heat sink applications, Metals, 11(2021), No. 2, art. No. 196. |
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
G. Chang, F.Y. Sun, L.H. Wang, Y. Zhang, X.T. Wang, J.G. Wang, M.J. Kim, and H.L. Zhang, Mo-interlayer-mediated thermal conductance at Cu/diamond interface measured by time-domain thermoreflectance, Compos. A: Appl. Sci. Manuf., 135(2020), art. No. 105921. |
| [73] |
|
| [74] |
X.R. Shi, S.M. Huang, Y. Huang, Y.J. Zhang, S.B. Zong, S.S. Xu, Y.Y. Chen, and P. Ma, Atomic structures and electronic properties of Ni or N modified Cu/diamond interface, J. Phys.: Condens. Matter, 32(2020), No. 22, art. No. 225001. |
| [75] |
C. Monachon, G. Schusteritsch, E. Kaxiras, and L. Weber, Qualitative link between work of adhesion and thermal conductance of metal/diamond interfaces, J. Appl. Phys., 115(2014), No. 12, art. No. 123509. |
| [76] |
H.N. Xie, Y.T. Chen, T.B. Zhang, N.Q. Zhao, C.S. Shi, C.N. He, and E.Z. Liu, Adhesion, bonding and mechanical properties of Mo doped diamond/Al (Cu) interfaces: A first principles study, Appl. Surf. Sci., 527(2020), art. No. 146817. |
| [77] |
|
| [78] |
|
| [79] |
Z.B. Sun, Z.R. Tian, L. Weng, Y. Liu, J.J. Zhang, and T.X. Fan, The effect of thermal mismatch on the thermal conductance of Al/SiC and Cu/diamond composites, J. Appl. Phys., 127(2020), No. 4, art. No. 045101. |
/
| 〈 |
|
〉 |