Kinetics of the hydrogen absorption and desorption processes of hydrogen storage alloys: A review
Qian Li , Xi Lin , Qun Luo , Yu’an Chen , Jingfeng Wang , Bin Jiang , Fusheng Pan
International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (1) : 32 -48.
Kinetics of the hydrogen absorption and desorption processes of hydrogen storage alloys: A review
High hydrogen absorption and desorption rates are two significant index parameters for the applications of hydrogen storage tanks. The analysis of the hydrogen absorption and desorption behavior using the isothermal kinetic models is an efficient way to investigate the kinetic mechanism. Multitudinous kinetic models have been developed to describe the kinetic process. However, these kinetic models were deduced based on some assumptions and only appropriate for specific kinetic measurement methods and rate-controlling steps (RCSs), which sometimes lead to confusion during application. The kinetic analysis procedures using these kinetic models, as well as the key kinetic parameters, are unclear for many researchers who are unfamiliar with this field. These problems will prevent the kinetic models and their analysis methods from revealing the kinetic mechanism of hydrogen storage alloys. Thus, this review mainly focuses on the summarization of kinetic models based on different kinetic measurement methods and RCSs for the chemisorption, surface penetration, diffusion of hydrogen, nucleation and growth, and chemical reaction processes. The analysis procedures of kinetic experimental data are expounded, as well as the effects of temperature, hydrogen pressure, and particle radius. The applications of the kinetic models for different hydrogen storage alloys are also introduced.
hydrogen storage / metal hydrides / hydrogen absorption process / hydrogen desorption process / kinetic models
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
H.Q. Nguyen and B. Shabani, Proton exchange membrane fuel cells heat recovery opportunities for combined heating/cooling and power applications, Energy Convers. Manage., 204(2020), art. No. 112328. |
| [5] |
|
| [6] |
X. Lin, H.G. Yang, Q. Zhu, and Q. Li, Numerical simulation of a metal hydride tank with LaNi4.25Al0.75 using a novel kinetic model at constant flows, Chem. Eng. J., 401(2020), art. No. 126115. |
| [7] |
Y. Ye, J.F. Lu, J. Ding, W.L. Wang, and J.Y. Yan, Numerical simulation on the storage performance of a phase change materials based metal hydride hydrogen storage tank, Appl. Energy, 278(2020), art. No. 115682. |
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
G. Chen, Y. Zhang, J. Chen, X.L. Guo, Y.F. Zhu, and L.Q. Li, Enhancing hydrogen storage performances of MgH2 by Ni nano-particles over mesoporous carbon CMK-3, Nanotechnol., 29(2018), No. 26, art. No. 265705. |
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
F. Booth, A note on the theory of surface diffusion reactions, Trans. Faraday Soc., 44(1948), art. No. 796. |
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
X. Lin, W. Xie, Q. Zhu, H.G. Yang, and Q. Li, Rational optimization of metal hydride tank with LaNi4.25Al0.75 as hydrogen storage medium, Chem. Eng. J., 421(2021), art. No. 127844. |
| [50] |
|
| [51] |
X. Lin, D.K. Sun, S.L. Chen, Q. Zhu, H.Y. Leng, and Q. Li, Numerical analysis on pulverization and self-densification for hydrogen storage performance of a metal hydride tank, Appl. Therm. Eng., 161(2019), art. No. 114129. |
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
|
| [80] |
|
| [81] |
|
| [82] |
|
| [83] |
|
| [84] |
J.M. Joubert, V. Paul-Boncour, F. Cuevas, J.X. Zhang, and M. Latroche, LaNi5 related AB5 compounds: Structure, properties and applications, J. Alloys Compd., 862(2021), art. No. 158163. |
| [85] |
|
| [86] |
|
| [87] |
|
| [88] |
|
| [89] |
C.B. Wan, X.P. Jiang, X.H. Yin, and X. Ju, High-capacity Zr-based AB2-type alloys as metal hydride battery anodes, J. Alloys Compd., 828(2020), art. No. 154402. |
| [90] |
|
| [91] |
|
| [92] |
|
| [93] |
|
| [94] |
|
| [95] |
L.L. Luo, X.Q. Ye, G.H. Zhang, H.Q. Kou, R.J. Xiong, G. Sang, R.H. Yu, and D.L. Zhao, Enhancement of hydrogenation kinetics and thermodynamic properties of ZrCo1−x Cr x (x = 0–0.1) alloys for hydrogen storage, Chin. Phys. B, 29(2020), No. 8, art. No. 088801. |
| [96] |
|
| [97] |
|
| [98] |
L.Z. Ouyang, F. Liu, H. Wang, J.W. Liu, X.S. Yang, L.X. Sun, and M. Zhu, Magnesium-based hydrogen storage compounds: A review, J. Alloys Compd., 832(2020), art. No. 154865. |
| [99] |
|
| [100] |
|
| [101] |
Q. Luo, Q.F. Gu, J.Y. Zhang, S.L. Chen, K.C. Chou, and Q. Li, Phase equilibria, crystal structure and hydriding/dehydriding mechanism of Nd4Mg80Ni8 compound, Sci. Rep., 5(2015), art. No. 15385. |
| [102] |
|
| [103] |
|
| [104] |
|
| [105] |
|
| [106] |
|
| [107] |
|
| [108] |
|
| [109] |
|
| [110] |
|
| [111] |
|
| [112] |
|
| [113] |
|
| [114] |
|
| [115] |
|
| [116] |
|
| [117] |
|
| [118] |
|
| [119] |
|
| [120] |
|
| [121] |
|
| [122] |
|
| [123] |
|
| [124] |
|
| [125] |
|
| [126] |
|
| [127] |
|
| [128] |
|
/
| 〈 |
|
〉 |