Kinetics of the hydrogen absorption and desorption processes of hydrogen storage alloys: A review

Qian Li , Xi Lin , Qun Luo , Yu’an Chen , Jingfeng Wang , Bin Jiang , Fusheng Pan

International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (1) : 32 -48.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (1) : 32 -48. DOI: 10.1007/s12613-021-2337-8
Invited Review

Kinetics of the hydrogen absorption and desorption processes of hydrogen storage alloys: A review

Author information +
History +
PDF

Abstract

High hydrogen absorption and desorption rates are two significant index parameters for the applications of hydrogen storage tanks. The analysis of the hydrogen absorption and desorption behavior using the isothermal kinetic models is an efficient way to investigate the kinetic mechanism. Multitudinous kinetic models have been developed to describe the kinetic process. However, these kinetic models were deduced based on some assumptions and only appropriate for specific kinetic measurement methods and rate-controlling steps (RCSs), which sometimes lead to confusion during application. The kinetic analysis procedures using these kinetic models, as well as the key kinetic parameters, are unclear for many researchers who are unfamiliar with this field. These problems will prevent the kinetic models and their analysis methods from revealing the kinetic mechanism of hydrogen storage alloys. Thus, this review mainly focuses on the summarization of kinetic models based on different kinetic measurement methods and RCSs for the chemisorption, surface penetration, diffusion of hydrogen, nucleation and growth, and chemical reaction processes. The analysis procedures of kinetic experimental data are expounded, as well as the effects of temperature, hydrogen pressure, and particle radius. The applications of the kinetic models for different hydrogen storage alloys are also introduced.

Keywords

hydrogen storage / metal hydrides / hydrogen absorption process / hydrogen desorption process / kinetic models

Cite this article

Download citation ▾
Qian Li, Xi Lin, Qun Luo, Yu’an Chen, Jingfeng Wang, Bin Jiang, Fusheng Pan. Kinetics of the hydrogen absorption and desorption processes of hydrogen storage alloys: A review. International Journal of Minerals, Metallurgy, and Materials, 2022, 29(1): 32-48 DOI:10.1007/s12613-021-2337-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sakintuna B, Lamari-Darkrim F, Hirscher M. Metal hydride materials for solid hydrogen storage: A review. Int. J. Hydrogen Energy, 2007, 32(9): 1121.

[2]

Wei TY, Lim KL, Tseng YS, Chan SLI. A review on the characterization of hydrogen in hydrogen storage materials. Renewable Sustainable Energy Rev., 2017, 79, 1122.

[3]

Li Y, Cheng LN, Miao WK, Wang CX, Kuang DZ, Han SM. Nd—Mg—Ni alloy electrodes modified by reduced graphene oxide with improved electrochemical kinetics. Int. J. Miner. Metall. Mater., 2020, 27(3): 391.

[4]

H.Q. Nguyen and B. Shabani, Proton exchange membrane fuel cells heat recovery opportunities for combined heating/cooling and power applications, Energy Convers. Manage., 204(2020), art. No. 112328.

[5]

Park CS, Jung K, Jeong SU, Kang KS, Lee YH, Park YS, Park BH. Development of hydrogen storage reactor using composite of metal hydride materials with ENG. Int. J. Hydrogen Energy, 2020, 45(51): 27434.

[6]

X. Lin, H.G. Yang, Q. Zhu, and Q. Li, Numerical simulation of a metal hydride tank with LaNi4.25Al0.75 using a novel kinetic model at constant flows, Chem. Eng. J., 401(2020), art. No. 126115.

[7]

Y. Ye, J.F. Lu, J. Ding, W.L. Wang, and J.Y. Yan, Numerical simulation on the storage performance of a phase change materials based metal hydride hydrogen storage tank, Appl. Energy, 278(2020), art. No. 115682.

[8]

He WC, XW, Ding CY, Yan ZM. Oxidation pathway and kinetics of titania slag powders during cooling process in air. Int. J. Miner. Metall. Mater., 2021, 28(6): 981.

[9]

Shen XY, Liang YY, Shao HM, Sun Y, Liu Y, Zhai YC. Extraction and kinetic analysis of Pb and Sr from the leaching residue of zinc oxide ore. Int. J. Miner. Metall. Mater., 2021, 28(2): 201.

[10]

Sun MM, Zhang JL, Li KJ, Guo K, Wang ZM, Jiang CH. Gasification kinetics of bulk coke in the CO2/CO/H2/H2O/N2 system simulating the atmosphere in the industrial blast furnace. Int. J. Miner. Metall. Mater., 2019, 26(10): 1247.

[11]

Zhu XF, Zhang TA, GZ. Kinetics of carbonated decomposition of hydrogarnet with different silica saturation coefficients. Int. J. Miner. Metall. Mater., 2020, 27(4): 472.

[12]

Wang CS, Wang XH, Lei YQ, Chen CP, Wang QD. The hydriding kinetics of MlNi5—I. Development of the model. Int. J. Hydrogen Energy, 1996, 21(6): 471.

[13]

Si TZ, Zhang XY, Feng JJ, Ding XL, Li YT. Enhancing hydrogen sorption in MgH2 by controlling particle size and contact of Ni catalysts. Rare Met., 2021, 40(4): 995.

[14]

Pang YP, Li Q. A review on kinetic models and corresponding analysis methods for hydrogen storage materials. Int. J. Hydrogen Energy, 2016, 41(40): 18072.

[15]

G. Chen, Y. Zhang, J. Chen, X.L. Guo, Y.F. Zhu, and L.Q. Li, Enhancing hydrogen storage performances of MgH2 by Ni nano-particles over mesoporous carbon CMK-3, Nanotechnol., 29(2018), No. 26, art. No. 265705.

[16]

Vega LER, Leiva DR, Leal Neto RM, Silva WB, Silva RA, Ishikawa TT, Kiminami CS, Botta WJ. Improved ball milling method for the synthesis of nanocrystal-line TiFe compound ready to absorb hydrogen. Int. J. Hydrogen Energy, 2020, 45(3): 2084.

[17]

Kou HQ, He H, Luo WH, Tang T, Huang ZY, Wang H, Bao JC, Xue Y, Pei SH, Liu WD. Effects of ball milling on hydrogen sorption properties and microstructure of ZrCo alloy. Fusion Eng. Des., 2019, 138, 68.

[18]

Jander W. Reaktionen im festen Zustande Bei höheren Temperaturen. Reaktionsgeschwindigkeiten endotherm verlaufender Umsetzungen. Z. Anorg. Allg. Chem., 1927, 163(1): 1.

[19]

Cao ZJ, Ouyang LZ, Wang H, Liu JW, Sun LX, Felderhoff M, Zhu M. Development of ZrFeV alloys for hybrid hydrogen storage system. Int. J. Hydrogen Energy, 2016, 41(26): 11242.

[20]

Chou KC, Li Q, Lin Q, Jiang LJ, Xu KD. Kinetics of absorption and desorption of hydrogen in alloy powder. Int. J. Hydrogen Energy, 2005, 30(3): 301.

[21]

Li Q, Chou KC, Lin Q, Jiang LJ, Zhan F. Influence of the initial hydrogen pressure on the hydriding kinetics of the Mg2−xAlxNi (x = 0, 0.1) alloys. Int. J. Hydrogen Energy, 2004, 29(13): 1383.

[22]

Luo Q, An XH, Pan YB, Zhang X, Zhang JY, Li Q. The hydriding kinetics of Mg-Ni based hydrogen storage alloys: A comparative study on Chou model and Jander model. Int. J. Hydrogen Energy, 2010, 35(15): 7842.

[23]

Cui XY, Li Q, Chou KC, Chen SL, Lin GW, Xu KD. A comparative study on the hydriding kinetics of Zr-based AB2 hydrogen storage alloys. Intermetallics, 2008, 16(5): 662.

[24]

An XH, Pan YB, Luo Q, Zhang X, Zhang JY, Li Q. Application of a new kinetic model for the hydriding kinetics of LaNi5−xAlx (0 ≤ x ≤ 1.0) alloys. J. Alloys Compd., 2010, 506(1): 63.

[25]

Pan YB, Wu YF, Li Q. Modeling and analyzing the hydriding kinetics of Mg—LaNi5 composites by Chou model. Int. J. Hydrogen Energy, 2011, 36(20): 12892.

[26]

Li Q, Jiang LJ, Chou KC, Lin Q, Zhan F, Xu KD, Lu XG, Zhang JY. Effect of hydrogen pressure on hydriding kinetics in the Mg2−xAgxNi-H (x = 0.05, 0.1) system. J. Alloys Compd., 2005, 399(1–2): 101.

[27]

Luo Q, Li JD, Li B, Liu B, Shao HY, Li Q. Kinetics in Mg-based hydrogen storage materials: Enhancement and mechanism. J. Magnesium Alloys, 2019, 7(1): 58.

[28]

Pang YP, Sun DK, Gu QF, Chou KC, Wang XL, Li Q. Comprehensive determination of kinetic parameters in solid-state phase transitions: An extended jonhson—mehlavrami—kolomogorov model with analytical solutions. Cryst. Growth Des., 2016, 16(4): 2404.

[29]

Luo Q, Gu QF, Liu B, Zhang TF, Liu WQ, Li Q. Achieving superior cycling stability by in situ forming NdH2—Mg—Mg2Ni nanocomposites. J. Mater. Chem. A, 2018, 6(46): 23308.

[30]

Zhang YH, Zhang W, Gao JL, Wei X, Zhai TT, Cai Y. Improved hydrogen storage kinetics of Mg-based alloys by substituting La with Sm. Int. J. Hydrogen Energy, 2020, 45(41): 21588.

[31]

Yang XL, Hou QH, Yu LB, Zhang JQ. Improvement of the hydrogen storage characteristics of MgH2 with a flake Ni nano-catalyst composite. Dalton Trans., 2021, 50(5): 1797.

[32]

Zhang YH, Wei X, Zhang W, Yuan ZM, Gao JL, Qi Y, Ren HP. Effect of milling duration on hydrogen storage thermodynamics and kinetics of Mg-based alloy. Int. J. Hydrogen Energy, 2020, 45(58): 33832.

[33]

Chou KC, Xu KD. A new model for hydriding and dehydriding reactions in intermetallics. Intermetallics, 2007, 15(5–6): 767.

[34]

Khawam A, Flanagan DR. Solid-state kinetic models: Basics and mathematical fundamentals. J. Phys. Chem. B, 2006, 110(35): 17315.

[35]

Bloch J, Mintz MH. Kinetics and mechanisms of metal hydrides formation—A review. J. Alloys Compd., 1997, 253–254, 529.

[36]

Song JF, She J, Chen DL, Pan FS. Latest research advances on magnesium and magnesium alloys worldwide. J. Magnesium Alloys, 2020, 8(1): 1.

[37]

Jiang W, Wang H, Zhu M. AlH3 as a hydrogen storage material: Recent advances, prospects and challenges. Rare Met., 2021, 40(12): 3337.

[38]

Rudman PS. Hydriding and dehydriding kinetics. J. Less Common Met., 1983, 89(1): 93.

[39]

Broom DP. Hydrogen Storage Materials: The Characterisation of Their Storage Properties, 2011, London, Springer

[40]

Aharoni C, Tompkins FC. Kinetics of adsorption and desorption and the elovich equation. Adv. Catal., 1970, 21, 1

[41]

Ginstling A, Brounshtein B. Concerning the diffusion kinetics of reactions in spherical particles. J. Appl. Chem. USSR, 1950, 23, 1327

[42]

Carter RE. Kinetic model for solid-state reactions. J. Chem. Phys., 1961, 34(6): 2010.

[43]

F. Booth, A note on the theory of surface diffusion reactions, Trans. Faraday Soc., 44(1948), art. No. 796.

[44]

Chou KC, Luo Q, Li Q, Zhang JY. Influence of the density of oxide on oxidation kinetics. Intermetallics, 2014, 47, 17.

[45]

Crank J. The Mathematics of Diffusion, 1979, 2nd ed. London, Oxford university press

[46]

Kempen ATW, Sommer F, Mittemeijer EJ. Determination and interpretation of isothermal and non-isothermal transformation kinetics; the effective activation energies in terms of nucleation and growth. J. Mater. Sci., 2002, 37(7): 1321.

[47]

Christian JW. Eutectoidal transformations. The Theory of Transformations in Metals and Alloys, 2002, Amsterdam, Elsevier, 797.

[48]

Carstensen JT. Stability of solids and solid dosage forms. J. Pharm. Sci., 1974, 63(1): 1.

[49]

X. Lin, W. Xie, Q. Zhu, H.G. Yang, and Q. Li, Rational optimization of metal hydride tank with LaNi4.25Al0.75 as hydrogen storage medium, Chem. Eng. J., 421(2021), art. No. 127844.

[50]

Wang XH, Wang CS, Chen CP, Lei YQ, Wang QD. The hydriding kinetics of MlNi5—II. Experimental results. Int. J. Hydrogen Energy, 1996, 21(6): 479.

[51]

X. Lin, D.K. Sun, S.L. Chen, Q. Zhu, H.Y. Leng, and Q. Li, Numerical analysis on pulverization and self-densification for hydrogen storage performance of a metal hydride tank, Appl. Therm. Eng., 161(2019), art. No. 114129.

[52]

Lin X, Zhu Q, Leng HY, Yang HG, Lyu T, Li Q. Numerical analysis of the effects of particle radius and porosity on hydrogen absorption performances in metal hydride tank. Appl. Energy, 2019, 250, 1065.

[53]

Nam J, Ko J, Ju H. Three-dimensional modeling and simulation of hydrogen absorption in metal hydride hydrogen storage vessels. Appl. Energy, 2012, 89(1): 164.

[54]

Wang D, Wang YQ, Huang ZN, Yang FS, Wu Z, Zheng L, Wu L, Zhang ZX. Design optimization and sensitivity analysis of the radiation mini-channel metal hydride reactor. Energy, 2019, 173, 443.

[55]

Yang T, Wang P, Xia CQ, Li Q, Liang CY, Zhang YH. Characterization of microstructure, hydrogen storage kinetics and thermodynamics of a melt-spun Mg86Y10Ni4 alloy. Int. J. Hydrogen Energy, 2019, 44(13): 6728.

[56]

Zhang YH, Li XF, Cai Y, Qi Y, Guo SH, Zhao DL. Improved hydrogen storage performances of Mg—Y—Ni—Cu alloys by melt spinning. Renew. Energy, 2019, 138, 263.

[57]

Nahm KS, Kim WY, Hong SP, Lee WY. The reaction kinetics of hydrogen storage in LaNi5. Int. J. Hydrogen Energy, 1992, 17(5): 333.

[58]

Oh JW, Kim CY, Nahm KS, Sim KS. The hydriding kinetics of LaNi4.5Al0.5 with hydrogen. J. Alloys Compd., 1998, 278(1–2): 270.

[59]

Mungole MN, Balasubramaniam R. Hydrogen desorption kinetics in MmNi4.2Al0.8—H system. Int. J. Hydrogen Energy, 1998, 23(5): 349.

[60]

Li Q, Lin Q, Chou KC, Jiang LJ, Zhan F. Hydriding kinetics of the La1.5Ni0.5Mg17—H system prepared by hydriding combustion synthesis. Intermetallics, 2004, 12(12): 1293.

[61]

Jat RA, Parida SC, Nuwad J, Agarwal R, Kulkarni SG. Hydrogen sorption—desorption studies on ZrCo—hydrogen system. J. Therm. Anal. Calorim., 2013, 112(1): 37.

[62]

Jai-Young L, Park CN, Pyun SM. The activation processes and hydriding kinetics of FeTi. J. Less Common Met., 1983, 89(1): 163.

[63]

Bershadsky E, Klyuch A, Ron M. Hydrogen absorption and desorption kinetics of TiFe0.8Ni0.2H. Int. J. Hydrogen Energy, 1995, 20(1): 29.

[64]

Ramesh R, Murti YVGS, Reddy KV, Rama Rao KVS, Das TP. The kinetics of hydrogen absorption in Zr1−xHoxCo2 (x = 0.4, 0.6 and 0.8) alloys. J. Alloys Compd., 1994, 205(1–2): 211.

[65]

Kong XC, Du JL, Wang K, Li ZL, Wu Z. Kinetics of hydrogen absorption for Ti33V20Cr47 alloy powder. Rare Met. Mater. Eng., 2012, 41(11): 1899.

[66]

Li Q, Chou KC, Lin Q, Jiang LJ, Zhan F. Hydrogen absorption and desorption kinetics of Ag—Mg—Ni alloys. Int. J. Hydrogen Energy, 2004, 29(8): 843.

[67]

Liang G, Huot J, Boily S, Van Neste A, Schulz R. Hydrogen storage properties of the mechanically milled MgH2—V nanocomposite. J. Alloys Compd., 1999, 291(1–2): 295.

[68]

Liang G, Huot J, Boily S, Schulz R. Hydrogen desorption kinetics of a mechanically milled MgH2+5at.%V nanocomposite. J. Alloys Compd., 2000, 305(1–2): 239.

[69]

Akiba E, Nomura K, Ono S, Suda S. Kinetics of the reaction between Mg—Ni alloys and H2. Int. J. Hydrogen Energy, 1982, 7(10): 787.

[70]

Penzhorn RD, Sirch M, Perevezentsev AN, Borisenko AN. Hydrogen sorption rate by intermetallic compounds suitable for tritium storage. Fusion Technol., 1995, 28(3P2): 1399.

[71]

Bershadsky E, Josephy Y, Ron M. Investigation of kinetics and structural changes in TiFe0.8 Ni0.2 after prolonged cycling. J. Less Common Met., 1991, 172–174, 1036.

[72]

Liu YF, Zhong K, Luo K, Gao MX, Pan HG, Wang QD. Size-dependent kinetic enhancement in hydrogen absorption and desorption of the Li—Mg—N—H system. J. Am. Chem. Soc., 2009, 131(5): 1862.

[73]

Zhong K, Liu YF, Gao MX, Wang JH, Miao H, Pan HG. Electrochemical kinetic performance of V—Ti—based hydrogen storage alloy electrode with different particle sizes. Int. J. Hydrogen Energy, 2008, 33(1): 149.

[74]

Shriniwasan S, Tien HY, Tanniru M, Tatiparti SSV. On the parameters of Johnson-Mehl-Avrami-Kolmogorov equation for the hydride growth mechanisms: A case of MgH2. J. Alloys Compd., 2018, 742, 1002.

[75]

Miyamoto M, Yamaji K, Nakata Y. Reaction kinetics of LaNi5. J. Less Common Met., 1983, 89(1): 111.

[76]

Boser O. Hydrogen sorption in LaNi5. J. Less Common Met., 1976, 46(1): 91.

[77]

Goodell PD, Rudman PS. Hydriding and dehydriding rates of the LaNi5—H system. J. Less Common Met., 1983, 89(1): 117.

[78]

Koh JT, Goudy AJ, Huang P, Zhou G. A comparison of the hydriding and dehydriding kinetics of LaNI5 hydride. J. Less Common Met., 1989, 153(1): 89.

[79]

Zarynow A, Goudy AJ, Schweibenz RG, Clay KR. The effect of the partial replacement of nickelin LaNi5 hydride with iron, cobalt, and copper on absorption and desorption kinetics. J. Less Common Met., 1991, 172–174, 1009.

[80]

Muthukumar P, Satheesh A, Linder M, Mertz R, Groll M. Studies on hydriding kinetics of some La-based metal hydride alloys. Int. J. Hydrogen Energy, 2009, 34(17): 7253.

[81]

Shriniwasan S, Goswami H, Tien HY, Tanniru M, Ebrahimi F, Tatiparti SSV. Contributions of multiple phenomena towards hydrogenation: A case of Mg. J. Alloys Compd., 2015, 40(39): 13518

[82]

Liu GL, Chen DM, Wang YM, Yang K. Experimental and computational investigations of LaNi5−xAlx (x = 0, 0.25, 0.5, 0.75 and 1.0) tritium-storage alloys. J. Mater. Sci. Technol., 2018, 34(9): 1699.

[83]

Wang XL, Suda S. Effects of Al-substitution on hydriding reaction rates of LaNi5−xAlx. J. Alloys Compd., 1993, 191(1): 5.

[84]

J.M. Joubert, V. Paul-Boncour, F. Cuevas, J.X. Zhang, and M. Latroche, LaNi5 related AB5 compounds: Structure, properties and applications, J. Alloys Compd., 862(2021), art. No. 158163.

[85]

Balasubramaniam R, Mungole MN, Rai KN. Hydriding properties of MmNi5 system with aluminium, manganese and tin substitutions. J. Alloys Compd., 1993, 196(1–2): 63.

[86]

Jurczyk M, Rajewski W, Majchrzycki W, Wójcik G. Mechanically alloyed MmNi5-type materials for metal hydride electrodes. J. Alloys Compd., 1999, 290(1–2): 262.

[87]

Kandavel M, Bhat VV, Rougier A, Aymard L, Nazri GA, Tarascon JM. Improvement of hydrogen storage properties of the AB2 Laves phase alloys for automotive application. Int. J. Hydrogen Energy, 2008, 33(14): 3754.

[88]

Ruiz FC, Castro EB, Peretti HA, Visintin A. Study of the different ZrxNiy phases of Zr-based AB2 materials. Int. J. Hydrogen Energy, 2010, 35(18): 9879.

[89]

C.B. Wan, X.P. Jiang, X.H. Yin, and X. Ju, High-capacity Zr-based AB2-type alloys as metal hydride battery anodes, J. Alloys Compd., 828(2020), art. No. 154402.

[90]

Xu YH, Chen CP, Wang XL, Lei YQ, Wang QD. The cycle life and surface properties of Ti-based AB2 metal hydride electrodes. J. Alloys Compd., 2002, 337(1–2): 214.

[91]

Ulmer U, Dieterich M, Pohl A, Dittmeyer R, Linder M, Fichtner M. Study of the structural, thermodynamic and cyclic effects of vanadium and titanium substitution in laves-phase AB2 hydrogen storage alloys. Int. J. Hydrogen Energy, 2017, 42(31): 20103.

[92]

Li JG, Guo YR, Jiang XJ, Li S, Li XG. Hydrogen storage performances, kinetics and microstructure of Ti1.02Cr1.0Fe0.7−xMn0.3Alx alloy by Al substituting for Fe. Renew. Energy, 2020, 153, 1140.

[93]

Kesavan TR, Ramaprabhu S, Rama Rao KVS, Das TP. Hydrogen absorption and kinetic studies in Zr0.2Ho0.8Fe2. J. Alloys Compd., 1996, 244(1–2): 164.

[94]

Wang F, Li RF, Ding CP, Wan J, Yu RH, Wang ZM. Effect of catalytic Ni coating with different depositing time on the hydrogen storage properties of ZrCo alloy. Int. J. Hydrogen Energy, 2016, 41(39): 17421.

[95]

L.L. Luo, X.Q. Ye, G.H. Zhang, H.Q. Kou, R.J. Xiong, G. Sang, R.H. Yu, and D.L. Zhao, Enhancement of hydrogenation kinetics and thermodynamic properties of ZrCo1−x Cr x (x = 0–0.1) alloys for hydrogen storage, Chin. Phys. B, 29(2020), No. 8, art. No. 088801.

[96]

Zhang J, Yan S, Xia GL, Zhou XJ, Lu XZ, Yu LP, Yu XB, Peng P. Stabilization of low-valence transition metal towards advanced catalytic effects on the hydrogen storage performance of magnesium hydride. J. Magnesium Alloys, 2021, 9(2): 647.

[97]

Yao PY, Jiang Y, Liu Y, Wu CZ, Chou KC, Lyu T, Li Q. Catalytic effect of Ni@rGO on the hydrogen storage properties of MgH2. J. Magnesium Alloys, 2020, 8(2): 461.

[98]

L.Z. Ouyang, F. Liu, H. Wang, J.W. Liu, X.S. Yang, L.X. Sun, and M. Zhu, Magnesium-based hydrogen storage compounds: A review, J. Alloys Compd., 832(2020), art. No. 154865.

[99]

Ismail M, Yahya MS, Sazelee NA, Ali NA, Yap FAH, Mustafa NS. The effect of K2SiF6 on the MgH2 hydrogen storage properties. J. Magnesium Alloys, 2020, 8(3): 832.

[100]

Meena P, Singh R, Sharma VK, Jain IP. Role of NiMn9.3Al4.0Co14.1Fe3.6 alloy on dehydrogenation kinetics of MgH2. J. Magnesium Alloys, 2018, 6(3): 318.

[101]

Q. Luo, Q.F. Gu, J.Y. Zhang, S.L. Chen, K.C. Chou, and Q. Li, Phase equilibria, crystal structure and hydriding/dehydriding mechanism of Nd4Mg80Ni8 compound, Sci. Rep., 5(2015), art. No. 15385.

[102]

Lu YS, Zhu M, Wang H, Li ZM, Ouyang LZ, Liu JW. Reversible de-/hydriding characteristics of a novel Mg18In1Ni3 alloy. Int. J. Hydrogen Energy, 2014, 39(26): 14033.

[103]

Li Q, Chou KC, Xu KD, Lin Q, Jiang LJ, Zhan F. Determination and interpretation of the hydriding and dehydriding kinetics in mechanically alloyed LaNiMg17 composite. J. Alloys Compd., 2005, 387(1–2): 86

[104]

Long S, Zou JX, Chen X, Zeng XQ, Ding WJ. A comparison study of Mg—Y2O3 and Mg—Y hydrogen storage composite powders prepared through arc plasma method. J. Alloys Compd., 2014, 615, S684.

[105]

Ouyang LZ, Yang XS, Zhu M, Liu JW, Dong HW, Sun DL, Zou J, Yao XD. Enhanced hydrogen storage kinetics and stability by synergistic effects of in situ formed CeH2.73 and Ni in CeH2.73—MgH2—Ni nanocomposites. J. Phys. Chem. C, 2014, 118(15): 7808.

[106]

Sun Y, Wang DB, Wang JM, Liu BZ, Peng QM. Hydrogen storage properties of ultrahigh pressure Mg12NiY alloys with a superfine LPSO structure. Int. J. Hydrogen Energy, 2019, 44(41): 23179.

[107]

Ouyang LZ, Cao ZJ, Wang H, Liu JW, Sun DL, Zhang QA, Zhu M. Dual-tuning effect of In on the thermodynamic and kinetic properties of Mg2Ni dehydrogenation. Int. J. Hydrogen Energy, 2013, 38(21): 8881.

[108]

Liu T, Chen CG, Wang F, Li XG. Enhanced hydrogen storage properties of magnesium by the synergic catalytic effect of TiH1.971 and TiH1.5 nanoparticles at room temperature. J. Power Sources, 2014, 267, 69.

[109]

Stander CM. Kinetics of formation of magnesium hydride from magnesium and hydrogen. Z. Phys. Chem., 1977, 104(4–6): 229.

[110]

Mintz MH, Gavra Z, Hadari Z. Kinetic study of the reaction between hydrogen and magnesium, catalyzed by addition of indium. J. Inorg. Nucl. Chem., 1978, 40(5): 765.

[111]

Shriniwasan S, Tien HY, Tanniru M, Ebrahimi F, Tatiparti SSV. Transition from interfacial to diffusional growth during hydrogenation of Mg. Mater. Lett., 2015, 161, 271.

[112]

Trivedi P, Nune KC. Bioactivity, cytocompatibility and effect of cells on degradation behavior of Mg—2Zn—2Gd alloy. Nanomater. Energy, 2019, 8(2): 117.

[113]

Xie TC, Shi H, Wang HB, Luo Q, Li Q, Chou KC. Thermodynamic prediction of thermal diffusivity and thermal conductivity in Mg—Zn—La/Ce system. J. Mater. Sci. Technol., 2022, 97, 147.

[114]

Li Y, Gu QF, Li Q, Zhang TF. In-situ synchrotron X-ray diffraction investigation on hydrogen-induced decomposition of long period stacking ordered structure in Mg-Ni-Y system. Scripta Mater., 2017, 127, 102.

[115]

Liang G. Synthesis and hydrogen storage properties of Mg-based alloys. J. Alloys Compd., 2004, 370(1–2): 123.

[116]

Yong H, Guo SH, Yuan ZM, Qi Y, Zhao DL, Zhang YH. Improved hydrogen storage kinetics and thermodynamics of RE—Mg-based alloy by co-doping Ce—Y. Int. J. Hydrogen Energy, 2019, 44(31): 16765.

[117]

Wu KB, Luo Q, Chen SL, Gu QF, Chou KC, Wang XL, Li Q. Phase equilibria of Ce—Mg—Ni ternary system at 673 K and hydrogen storage properties of selected alloy. Int. J. Hydrogen Energy, 2016, 41(3): 1725.

[118]

Khan D, Zou JX, Zeng XQ, Ding WJ. Hydrogen storage properties of nanocrystalline Mg2Ni prepared from compressed 2MgH2—Ni powder. Int. J. Hydrogen Energy, 2018, 43(49): 22391.

[119]

Li MH, Zhu YF, Yang C, Zhang JG, Chen W, Li LQ. Enhanced electrochemical hydrogen storage properties of Mg2NiH4 by coating with nano-nickel. Int. J. Hydrogen Energy, 2015, 40(40): 13949.

[120]

Kohno T, Tsuruta S, Kanda M. The hydrogen storage properties of new Mg2Ni alloy. J. Electrochem. Soc., 1996, 143(9): L198.

[121]

Han JS, Lee JY. A study of the hydriding kinetics of Mg2Ni. J. Less Common Met., 1987, 131(1–2): 109

[122]

Li LQ, Saita I, Saito K, Akiyama T. Effect of synthesis temperature on the hydriding behaviors of Mg—Ni—Cu ternary hydrogen storage alloys synthesized by hydriding combustion synthesis. J. Alloys Compd., 2004, 372(1–2): 218.

[123]

Lin HJ, Zhang C, Wang H, Ouyang LZ, Zhu YF, Li LQ, Wang WH, Zhu M. Controlling nanocrystallization and hydrogen storage property of Mg-based amorphous alloy via a gas-solid reaction. J. Alloys Compd., 2016, 685, 272.

[124]

Jiang JJ, Leng HY, Meng J, Chou KC, Li Q. Hydrogen storage characterization of Mg17Ni1.5Ce0.5/5 wt.% Graphite synthesized by mechanical milling and subsequent microwave sintering. Int. J. Energy Res., 2013, 37(7): 726.

[125]

Lu ZY, Yu HJ, Lu X, Song MC, Wu FY, Zheng JG, Yuan ZF, Zhang LT. Two-dimensional vanadium nanosheets as a remarkably effective catalyst for hydrogen storage in MgH2. Rare Met., 2021, 40(11): 3195.

[126]

Lan ZQ, Zeng L, Jiong G, Huang X, Liu HZ, Hua N, Guo J. Synthetical catalysis of nickel and graphene on enhanced hydrogen storage properties of magnesium. Int. J. Hydrogen Energy, 2019, 44(45): 24849.

[127]

Liang G, Huot J, Boily S, Van Neste A, Schulz R. Hydrogen storage in mechanically milled Mg—LaNi5 and MgH2—LaNi5 composites. J. Alloys Compd., 2000, 297(1–2): 261.

[128]

Ismail M, Zhao Y, Yu XB, Dou SX. Improved hydrogen storage performance of MgH2—NaAlH4 composite by addition of TiF3. Int. J. Hydrogen Energy, 2012, 37(10): 8395.

AI Summary AI Mindmap
PDF

143

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/