Effect of chromium interlayer thickness on interfacial thermal conductance across copper/diamond interface

Xiaoyan Liu , Fangyuan Sun , Wei Wang , Jie Zhao , Luhua Wang , Zhanxun Che , Guangzhu Bai , Xitao Wang , Jinguo Wang , Moon J. Kim , Hailong Zhang

International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (11) : 2020 -2031.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (11) : 2020 -2031. DOI: 10.1007/s12613-021-2336-9
Article

Effect of chromium interlayer thickness on interfacial thermal conductance across copper/diamond interface

Author information +
History +
PDF

Abstract

The thermal conductivity of diamond particles reinforced copper matrix composite as an attractive thermal management material is significantly lowered by the non-wetting heterointerface. The paper investigates the heat transport behavior between a 200-nm Cu layer and a single-crystalline diamond substrate inserted by a chromium (Cr) interlayer having a series of thicknesses from 150 nm down to 5 nm. The purpose is to detect the impact of the modifying interlayer thickness on the interfacial thermal conductance (h) between Cu and diamond. The time-domain thermoreflectance measurements suggest that the introduction of Cr interlayer dramatically improves the h between Cu and diamond owing to the enhanced interfacial adhesion and bridged dissimilar phonon states between Cu and diamond. The h value exhibits a decreasing trend as the Cr interlayer becomes thicker because of the increase in thermal resistance of Cr interlayer. The high h values are observed for the Cr interlayer thicknesses below 21 nm since phononic transport channel dominates the thermal conduction in the ultrathin Cr layer. The findings provide a way to tune the thermal conduction across the metal/nonmetal heterogeneous interface, which plays a pivotal role in designing materials and devices for thermal management applications.

Keywords

sputtering / diamond / metal/nonmetal interface / interfacial thermal conductance / time-domain thermoreflectance

Cite this article

Download citation ▾
Xiaoyan Liu, Fangyuan Sun, Wei Wang, Jie Zhao, Luhua Wang, Zhanxun Che, Guangzhu Bai, Xitao Wang, Jinguo Wang, Moon J. Kim, Hailong Zhang. Effect of chromium interlayer thickness on interfacial thermal conductance across copper/diamond interface. International Journal of Minerals, Metallurgy, and Materials, 2022, 29(11): 2020-2031 DOI:10.1007/s12613-021-2336-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Y.T. Li, Y. Tian, M.X. Sun, T. Tu, Z.Y. Ju, G.Y. Gou, Y.F. Zhao, Z.Y. Yan, F. Wu, D. Xie, H. Tian, Y. Yang, and T.L. Ren, Graphene-based devices for thermal energy conversion and utilization, Adv. Funct. Mater., 30(2020), No. 8, art. No. 1903888.

[2]

Qiu CG, Zhang ZY, Xiao MM, Yang YJ, Zhong DL, Peng LM. Scaling carbon nanotube complementary transistors to 5-nm gate lengths. Science, 2017, 355(6322): 271.

[3]

Yenigun O, Barisik M. Effect of nano-film thickness on thermal resistance at water/silicon interface. Int. J. Heat Mass Transfer, 2019, 134, 634.

[4]

Zhang Q, Wang XF, Shen SH, Lu Q, Liu XZ, Li HY, Zheng JY, Yu CP, Zhong XY, Gu L, Ren TL, Jiao LY. Simultaneous synthesis and integration of two-dimensional electronic components. Nat. Electron., 2019, 2(4): 164.

[5]

Hanif A, Yu YC, DeVoto D, Khan F. A comprehensive review toward the state-of-the-art in failure and lifetime predictions of power electronic devices. IEEE Trans. Power Electron., 2019, 34(5): 4729.

[6]

Wang PP, Chen GQ, Li WJ, Li H, Ju BY, Hussain M, Yang WS, Wu GH. Microstructural evolution and thermal conductivity of diamond/Al composites during thermal cycling. Int. J. Miner. Metall. Mater., 2021, 28(11): 1821.

[7]

Lan T, Jiang YH, Zhang XJ, Cao F, Liang SH. Competitive precipitation behavior of hybrid reinforcements in copper matrix composites fabricated by powder metallurgy. Int. J. Miner. Metall. Mater., 2021, 28(6): 1090.

[8]

Gu KX, Pang MJ, Zhan YZ. Insight into interfacial structure and bonding nature of diamond(001)/Cr3C2(001) interface. J. Alloys Compd., 2019, 770, 82.

[9]

Ciupiński Ł, Kruszewski MJ, Grzonka J, Chmielewski M, Zielińsk R, Moszczyńska D, Michalski A. Design of interfacial Cr3C2 carbide layer via optimization of sintering parameters used to fabricate copper/diamond composites for thermal management applications. Mater. Des., 2017, 120, 170.

[10]

Wu YP, Sun YN, Luo JB, Cheng P, Wang Y, Wang H, Ding GF. Microstructure of Cu-diamond composites with near-perfect interfaces prepared via electroplating and its thermal properties. Mater. Charact., 2019, 150, 199.

[11]

X.Y. Liu, F.Y. Sun, L.H. Wang, Z.X. Wu, X.T. Wang, J.G. Wang, M.J. Kim, and H.L. Zhang, The role of Cr interlayer in determining interfacial thermal conductance between Cu and diamond, Appl. Surf. Sci., 515(2020), art. No. 146046.

[12]

Chang G, Sun FY, Duan JL, Che ZF, Wang XT, Wang JG, Kim MJ, Zhang HL. Effect of Ti interlayer on interfacial thermal conductance between Cu and diamond. Acta Mater., 2018, 160, 235.

[13]

Li JW, Zhang HL, Zhang Y, Che ZF, Wang XT. Microstructure and thermal conductivity of Cu/diamond composites with Ti-coated diamond particles produced by gas pressure infiltration. J. Alloys Compd., 2015, 647, 941.

[14]

Zhang Y, Zhang HL, Wu JH, Wang XT. Enhanced thermal conductivity in copper matrix composites reinforced with titanium-coated diamond particles. Scripta Mater., 2011, 65(12): 1097.

[15]

Lei L, Su Y, Bolzoni L, Yang F. Evaluation on the interface characteristics, thermal conductivity, and annealing effect of a hot-forged Cu−Ti/diamond composite. J. Mater. Sci. Technol., 2020, 49, 7.

[16]

C. Azina, I. Cornu, J.F. Silvain, Y.F. Lu, and J.L. Battaglia, Effect of titanium and zirconium carbide interphases on the thermal conductivity and interfacial heat transfers in copper/diamond composite materials, AIP Adv., 9(2019), No. 5, art. No. 055315.

[17]

Li JW, Wang XT, Qiao Y, Zhang Y, He ZB, Zhang HL. High thermal conductivity through interfacial layer optimization in diamond particles dispersed Zr-alloyed Cu matrix composites. Scripta Mater., 2015, 109, 72.

[18]

Liu RX, Luo GQ, Li Y, Zhang J, Shen Q, Zhang LM. Microstructure and thermal properties of diamond/copper composites with Mo2C in situ nano-coating. Surf. Coat. Technol., 2019, 360, 376.

[19]

Ma SD, Zhao NQ, Shi CS, Liu EZ, He CN, He F, Ma LY. Mo2C coating on diamond: Different effects on thermal conductivity of diamond/Al and diamond/Cu composites. Appl. Surf. Sci., 2017, 402, 372.

[20]

Abyzov AM, Kruszewski MJ, Ciupiński L, Mazurkiewicz M, Michalski A, Kurzydłowski KJ. Diamond-tungsten based coating-copper composites with high thermal conductivity produced by Pulse Plasma Sintering. Mater. Des., 2015, 76, 97.

[21]

Bai GZ, Wang LH, Zhang YJ, Wang XT, Wang JG, Kim MJ, Zhang HL. Tailoring interface structure and enhancing thermal conductivity of Cu/diamond composites by alloying boron to the Cu matrix. Mater. Charact., 2019, 152, 265.

[22]

Hung SW, Hu SQ, Shiomi J. Spectral control of thermal boundary conductance between copper and carbon crystals by self-assembled monolayers. ACS Appl. Electron. Mater., 2019, 1(12): 2594.

[23]

M. Jeong, J.P. Freedman, H.J. Liang, C.M. Chow, V.M. Sokalski, J.A. Bain, and J.A. Malen, Enhancement of thermal conductance at metal-dielectric interfaces using subnanometer metal adhesion layers, Phys. Rev. Appl., 5(2016), No. 1, art. No. 014009.

[24]

Wang LH, Li JW, Che ZF, Wang XT, Zhang HL, Wang JG, Kim MJ. Combining Cr pre-coating and Cr alloying to improve the thermal conductivity of diamond particles reinforced Cu matrix composites. J. Alloys Compd., 2018, 749, 1098.

[25]

M. Blank and L. Weber, Towards a coherent database of thermal boundary conductance at metal/dielectric interfaces, J. Appl. Phys., 125(2019), No. 9, art. No. 095302.

[26]

R. Prasher, Acoustic mismatch model for thermal contact resistance of van der Waals contacts, Appl. Phys. Lett., 94(2009), No. 4, art. No. 041905.

[27]

M. Blank and L. Weber, Influence of the thickness of a nanometric copper interlayer on Au/dielectric thermal boundary conductance, J. Appl. Phys., 124(2018), No. 10, art. No. 105304.

[28]

S.L. Udachan, N.H. Ayachit, and L.A. Udachan, Impact of substrates on the electrical properties of thin chromium films, Ing. Univ., 23(2019), No. 2.

[29]

Andreyev AV. The wetting and bonding of diamond films by high melting point metals in the range of diamond thermodynamic stability. Diam. Relat. Mater., 1994, 3(10): 1262.

[30]

Tanaka T, Ikawa N, Tsuwa H. Affinity of diamond for metals. CIRP Ann., 1981, 30(1): 241.

[31]

R. Cheaito, J.T. Gaskins, M.E. Caplan, B.F. Donovan, B.M. Foley, A. Giri, J.C. Duda, C.J. Szwejkowski, C. Constantin, H.J. Brown-Shaklee, J.F. Ihlefeld, and P.E. Hopkins, Thermal boundary conductance accumulation and interfacial phonon transmission: Measurements and theory, Phys. Rev. B, 91(2015), No. 3, art. No. 035432.

[32]

S. Sadasivam, N. Ye, J.P. Feser, J. Charles, K. Miao, T. Kubis, and T.S. Fisher, Thermal transport across metal silicide-silicon interfaces: First-principles calculations and Green’s function transport simulations, Phys. Rev. B, 95(2017), No. 8, art. No. 085310.

[33]

Y. Wang, Z.X. Lu, A.K. Roy, and X.L. Ruan, Effect of interlayer on interfacial thermal transport and hot electron cooling in metal-dielectric systems: An electron-phonon coupling perspective, J. Appl. Phys., 119(2016), No. 6, art. No. 065103.

[34]

Y. Wang, X.L. Ruan, and A.K. Roy, Two-temperature nonequilibrium molecular dynamics simulation of thermal transport across metal-nonmetal interfaces, Phys. Rev. B, 85(2012), No. 20, art. No. 205311.

[35]

Chen L, Chen ST, Hou Y. Understanding the thermal conductivity of diamond/copper composites by first-principles calculations. Carbon, 2019, 148, 249.

[36]

X.B. Li and R.G. Yang, Effect of lattice mismatch on phonon transmission and interface thermal conductance across dissimilar material interfaces, Phys. Rev. B, 86(2012), No. 5, art. No. 054305.

[37]

S. Merabia and K. Termentzidis, Thermal conductance at the interface between crystals using equilibrium and nonequilibrium molecular dynamics, Phys. Rev. B, 86(2012), No. 9, art. No. 094303.

[38]

Chu K, Jia CC, Liang XB, Chen H, Gao WJ, Guo H. Modeling the thermal conductivity of diamond reinforced aluminium matrix composites with inhomogeneous interfacial conductance. Mater. Des., 2009, 30(10): 4311.

[39]

Zhang W, Fisher TS, Mingo N. The atomistic Green’s function method: An efficient simulation approach for nanoscale phonon transport. Numer. Heat Transfer Part B, 2007, 51(4): 333.

[40]

B.C. Gundrum, D.G. Cahill, and R.S. Averback, Thermal conductance of metal-metal interfaces, Phys. Rev. B, 72(2005), No. 24, art. No. 245426.

[41]

M. Blank, G. Schneider, J. Ordonez-Miranda, and L. Weber, Role of the electron-phonon coupling on the thermal boundary conductance of metal/diamond interfaces with nanometric interlayers, J. Appl. Phys., 126(2019), No. 16, art. No. 165302.

[42]

P.E. Hopkins, J.L. Kassebaum, and P.M. Norris, Effects of electron scattering at metal-nonmetal interfaces on electron-phonon equilibration in gold films, J. Appl. Phys., 105(2009), No. 2, art. No. 023710.

[43]

Cahill DG, Ford WK, Goodson KE, Mahan GD, Majumdar A, Maris HJ, Merlin R, Phillpot SR. Nanoscale thermal transport. J. Appl. Phys., 2003, 93(2): 793.

[44]

Z.B. Lin, L.V. Zhigilei, and V. Celli, Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium, Phys. Rev. B, 77(2008), No. 7, art. No. 075133.

[45]

L. Guo, S.L. Hodson, T.S. Fisher, and X.F. Xu, Heat transfer across metal-dielectric interfaces during ultrafast-laser heating, J. Heat Transfer, 134(2012), No. 4, art. No. 042402.

[46]

Hopkins PE, Norris PM. Substrate influence in electron-phonon coupling measurements in thin Au films. Appl. Surf. Sci., 2007, 253(15): 6289.

[47]

J.B. Liang, S. Masuya, M. Kasu, and N. Shigekawa, Realization of direct bonding of single crystal diamond and Si substrates, Appl. Phys. Lett., 110(2017), No. 11, art. No. 111603.

[48]

Lv M, Xu B, Cai LC, Guo XF, Yuan XD. Auger electron spectroscopy analysis for growth interface of cubic boron nitride single crystals synthesized under high pressure and high temperature. Appl. Surf. Sci., 2018, 439, 780.

[49]

Unger WES, Wirth T, Hodoroaba VD. Auger electron spectroscopy. Characterization of Nanoparticles, 2020, Amsterdam, Elsevier, 373.

[50]

Cheng Z, Bai TY, Shi JJ, Feng TL, Wang YK, Mecklenburg M, Li C, Hobart KD, Feygelson TI, Tadjer MJ, Pate BB, Foley BM, Yates L, Pantelides ST, Cola BA, Goorsky M, Graham S. Tunable thermal energy transport across diamond membranes and diamond-Si interfaces by nanoscale graphoepitaxy. ACS Appl. Mater. Interfaces, 2019, 11(20): 18517.

[51]

L.P. Zeng, K.C. Collins, Y.J. Hu, M.N. Luckyanova, A.A. Maznev, S. Huberman, V. Chiloyan, J. Zhou, X. Huang, K.A. Nelson, and G. Chen, Measuring phonon mean free path distributions by probing quasiballistic phonon transport in grating nanostructures, Sci. Rep., 5(2015), art. No. 17131.

[52]

K.T. Regner, D.P. Sellan, Z.H. Su, C.H. Amon, A.J.H. McGaughey, and J.A. Malen, Broadband phonon mean free path contributions to thermal conductivity measured using frequency domain thermoreflectance, Nat. Commun., 4(2013), art. No. 1640.

[53]

R. Anufriev, A. Ramiere, J. Maire, and M. Nomura, Heat guiding and focusing using ballistic phonon transport in phononic nanostructures, Nat. Commun., 8(2017), art. No. 15505.

[54]

Rastgarkafshgarkolaei R, Zhang JJ, Polanco CA, Le NQ, Ghosh AW, Norris PM. Maximization of thermal conductance at interfaces via exponentially mass-graded interlayers. Nanoscale, 2019, 11(13): 6254.

[55]

Monje IE, Louis E, Molina JM. Role of Al4C3 on the stability of the thermal conductivity of Al/diamond composites subjected to constant or oscillating temperature in a humid environment. J. Mater. Sci., 2016, 51(17): 8027.

[56]

Zhang C, Wang RC, Cai ZY, Peng CQ, Feng Y, Zhang L. Effects of dual-layer coatings on microstructure and thermal conductivity of diamond/Cu composites prepared by vacuum hot pressing. Surf. Coat. Technol., 2015, 277, 299.

[57]

M. Kida, L. Weber, C. Monachon, and A. Mortensen, Thermal conductivity and interfacial conductance of AlN particle reinforced metal matrix composites, J. Appl. Phys., 109(2011), No. 6, art. No. 064907.

[58]

Kang QP, He XB, Ren SB, Zhang L, Wu M, Guo CY, Cui W, Qu XH. Preparation of copper-diamond composites with chromium carbide coatings on diamond particles for heat sink applications. Appl. Therm. Eng., 2013, 60(1–2): 423.

[59]

Majumdar A, Reddy P. Role of electron-phonon coupling in thermal conductance of metal-nonmetal interfaces. Appl. Phys. Lett., 2004, 84(23): 4768.

[60]

Min T, Gao YM, Li YF, Yang Y, Li RT, Xie XJ. First-principles calculations study on the electronic structures, hardness and Debye temperatures of chromium carbides. Rare Met. Mater. Eng., 2012, 41(2): 271

[61]

Tan ZQ, Li ZQ, Xiong DB, Fan GL, Ji G, Zhang D. A predictive model for interfacial thermal conductance in surface metallized diamond aluminum matrix composites. Mater. Des., 2014, 55, 257.

[62]

Swartz ET, Pohl RO. Thermal boundary resistance. Rev. Mod. Phys., 1989, 61(3): 605.

[63]

Qiu TQ, Tien CL. Size effects on nonequilibrium laser heating of metal films. J. Heat Transfer, 1993, 115(4): 842.

[64]

Wellershoff SS, Hohlfeld J, Güdde J, Matthias E. The role of electron-phonon coupling in femtosecond laser damage of metals. Appl. Phys. A, 1999, 69(1): S99

[65]

T. Saito, O. Matsuda, and O.B. Wright, Picosecond acoustic phonon pulse generation in nickel and chromium, Phys. Rev. B, 67(2003), No. 20, art. No. 205421.

[66]

J. Lombard, F. Detcheverry, and S. Merabia, Influence of the electron-phonon interfacial conductance on the thermal transport at metal/dielectric interfaces, J. Phys.: Condens. Matter, 27(2015), No. 1, art. No. 015007.

[67]

Hohlfeld J, Wellershoff SS, Güdde J, Conrad U, Jähnke V, Matthias E. Electron and lattice dynamics following optical excitation of metals. Chem. Phys., 2000, 251(1–3): 237.

[68]

Wellershoff SS, Gudde J, Hohlfeld J, Muller JG, Matthias E. Role of electron-phonon coupling in femtosecond laser damage of metals. Proc. SPIE 3343, High-Power Laser Ablation, 1998, 3343, 378.

[69]

Bonn M, Denzler DN, Funk S, Wolf M, Wellershoff SS, Hohlfeld J. Ultrafast electron dynamics at metal surfaces: Competition between electron-phonon coupling and hot-electron transport. Phys. Rev. B, 2000, 61(2): 1101.

[70]

Brorson SD, Kazeroonian A, Moodera JS, Face DW, Cheng TK, Ippen EP, Dresselhaus MS, Dresselhaus G. Femtosecond room-temperature measurement of the electron-phonon coupling constant γ in metallic superconductors. Phys. Rev. Lett., 1990, 64(18): 2172.

[71]

Y. Ezzahri and A. Shakouri, Ballistic and diffusive transport of energy and heat in metals, Phys. Rev. B, 79(2009), No. 18, art. No. 184303.

[72]

Elsayed-Ali HE, Norris TB, Pessot MA, Mourou GA. Time-resolved observation of electron-phonon relaxation in copper. Phys. Rev. Lett., 1987, 58(12): 1212.

[73]

Eesley GL. Generation of nonequilibrium electron and lattice temperatures in copper by picosecond laser pulses. Phys. Rev. B, 1986, 33(4): 2144.

[74]

M. Saghebfar, M.K. Tehrani, S.M.R. Darbani, and A.E. Majd, Femtosecond pulse laser ablation of chromium: Experimental results and two-temperature model simulations, Appl. Phys. A, 123(2017), No. 1, art. No. 28.

[75]

D. Gall, Electron mean free path in elemental metals, J. Appl. Phys., 119(2016), No. 8, art. No. 085101.

[76]

Kumar GS, Prasad G, Pohl RO. Experimental determinations of the Lorenz number. J. Mater. Sci., 1993, 28(16): 4261.

[77]

Fawcett E, Griffiths D. The Fermi surface areas of chromium, molybdenum and tungsten. J. Phys. Chem. Solids, 1962, 23(11): 1631.

[78]

D.G. Cahill, P.V. Braun, G. Chen, D.R. Clarke, S.H. Fan, K.E. Goodson, P. Keblinski, W.P. King, G.D. Mahan, A. Majumdar, H.J. Maris, S.R. Phillpot, E. Pop, and L. Shi, Nanoscale thermal transport. II. 2003–2012, Appl. Phys. Rev., 1(2014), No. 1, art. No. 011305.

[79]

Constant L, Speisser C, Normand FL. HFCVD diamond growth on Cu(111). Evidence for carbon phase transformations by in situ AES and XPS. Surf. Sci., 1997, 387(1–3): 28.

[80]

Zhu YF, Wang L, Yao WQ, Cao LL. The interface diffusion and reaction between Cr layer and diamond particle during metallization. Appl. Surf. Sci., 2001, 171(1–2): 143.

[81]

Mizokawa Y, Miyasato T, Nakamura S, Geib KM, Wilmsen CW. The C KLL first-derivative X-ray photoelectron spectroscopy spectra as a fingerprint of the carbon state and the characterization of diamondlike carbon films. J. Vac. Sci. Technol. A, 1987, 5(5): 2809.

[82]

Zhu YF, Yao WQ, Zheng B, Cao LL. Application of AES line shape analysis for the identification of interface species during the metallization of diamond particles. Surf. Interface Anal., 1999, 28(1): 254.

[83]

Smith MA, Levenson LL. Final-state effects in carbon Auger spectra of transition-metal carbides. Phys. Rev. B, 1977, 16(4): 1365.

[84]

Thornton JA. Substrate heating in cylindrical magnetron sputtering sources. Thin Solid Films, 1978, 54(1): 23.

[85]

Li ZJ, Tan S, Bozorg-Grayeli E, Kodama T, Asheghi M, Delgado G, Panzer M, Pokrovsky A, Wack D, Goodson KE. Phonon dominated heat conduction normal to Mo/Si multilayers with period below 10 nm. Nano Lett., 2012, 12(6): 3121.

[86]

N. Stojanovic, D.H.S. Maithripala, J.M. Berg, and M. Holtz, Thermal conductivity in metallic nanostructures at high temperature: Electrons, phonons, and the Wiedemann-Franz law, Phys. Rev. B, 82(2010), No. 7, art. No. 075418.

[87]

H.C. Chien, D.J. Yao, and C.T. Hsu, Measurement and evaluation of the interfacial thermal resistance between a metal and a dielectric, Appl. Phys. Lett., 93(2008), No. 23, art. No. 231910.

[88]

H. Belmabrouk, H. Rezgui, F. Nasri, M.F.B. Aissa, and A.A. Guizani, Interfacial heat transport across multilayer nanofilms in ballistic-diffusive regime, Eur. Phys. J. Plus, 135(2020), No. 1, art. No. 109.

[89]

Siemens ME, Li Q, Yang RG, Nelson KA, Anderson EH, Murnane MM, Kapteyn HC. Quasi-ballistic thermal transport from nanoscale interfaces observed using ultrafast coherent soft X-ray beams. Nat. Mater., 2010, 9(1): 26.

[90]

Mu FW, Cheng Z, Shi JJ, Shin S, Xu B, Shiomi J, Graham S, Suga T. High thermal boundary conductance across bonded heterogeneous GaN−SiC interfaces. ACS Appl. Mater. Interfaces, 2019, 11(36): 33428.

AI Summary AI Mindmap
PDF

264

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/