Effect of chromium interlayer thickness on interfacial thermal conductance across copper/diamond interface
Xiaoyan Liu , Fangyuan Sun , Wei Wang , Jie Zhao , Luhua Wang , Zhanxun Che , Guangzhu Bai , Xitao Wang , Jinguo Wang , Moon J. Kim , Hailong Zhang
International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (11) : 2020 -2031.
Effect of chromium interlayer thickness on interfacial thermal conductance across copper/diamond interface
The thermal conductivity of diamond particles reinforced copper matrix composite as an attractive thermal management material is significantly lowered by the non-wetting heterointerface. The paper investigates the heat transport behavior between a 200-nm Cu layer and a single-crystalline diamond substrate inserted by a chromium (Cr) interlayer having a series of thicknesses from 150 nm down to 5 nm. The purpose is to detect the impact of the modifying interlayer thickness on the interfacial thermal conductance (h) between Cu and diamond. The time-domain thermoreflectance measurements suggest that the introduction of Cr interlayer dramatically improves the h between Cu and diamond owing to the enhanced interfacial adhesion and bridged dissimilar phonon states between Cu and diamond. The h value exhibits a decreasing trend as the Cr interlayer becomes thicker because of the increase in thermal resistance of Cr interlayer. The high h values are observed for the Cr interlayer thicknesses below 21 nm since phononic transport channel dominates the thermal conduction in the ultrathin Cr layer. The findings provide a way to tune the thermal conduction across the metal/nonmetal heterogeneous interface, which plays a pivotal role in designing materials and devices for thermal management applications.
sputtering / diamond / metal/nonmetal interface / interfacial thermal conductance / time-domain thermoreflectance
| [1] |
Y.T. Li, Y. Tian, M.X. Sun, T. Tu, Z.Y. Ju, G.Y. Gou, Y.F. Zhao, Z.Y. Yan, F. Wu, D. Xie, H. Tian, Y. Yang, and T.L. Ren, Graphene-based devices for thermal energy conversion and utilization, Adv. Funct. Mater., 30(2020), No. 8, art. No. 1903888. |
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
X.Y. Liu, F.Y. Sun, L.H. Wang, Z.X. Wu, X.T. Wang, J.G. Wang, M.J. Kim, and H.L. Zhang, The role of Cr interlayer in determining interfacial thermal conductance between Cu and diamond, Appl. Surf. Sci., 515(2020), art. No. 146046. |
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
C. Azina, I. Cornu, J.F. Silvain, Y.F. Lu, and J.L. Battaglia, Effect of titanium and zirconium carbide interphases on the thermal conductivity and interfacial heat transfers in copper/diamond composite materials, AIP Adv., 9(2019), No. 5, art. No. 055315. |
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
M. Jeong, J.P. Freedman, H.J. Liang, C.M. Chow, V.M. Sokalski, J.A. Bain, and J.A. Malen, Enhancement of thermal conductance at metal-dielectric interfaces using subnanometer metal adhesion layers, Phys. Rev. Appl., 5(2016), No. 1, art. No. 014009. |
| [24] |
|
| [25] |
M. Blank and L. Weber, Towards a coherent database of thermal boundary conductance at metal/dielectric interfaces, J. Appl. Phys., 125(2019), No. 9, art. No. 095302. |
| [26] |
R. Prasher, Acoustic mismatch model for thermal contact resistance of van der Waals contacts, Appl. Phys. Lett., 94(2009), No. 4, art. No. 041905. |
| [27] |
M. Blank and L. Weber, Influence of the thickness of a nanometric copper interlayer on Au/dielectric thermal boundary conductance, J. Appl. Phys., 124(2018), No. 10, art. No. 105304. |
| [28] |
S.L. Udachan, N.H. Ayachit, and L.A. Udachan, Impact of substrates on the electrical properties of thin chromium films, Ing. Univ., 23(2019), No. 2. |
| [29] |
|
| [30] |
|
| [31] |
R. Cheaito, J.T. Gaskins, M.E. Caplan, B.F. Donovan, B.M. Foley, A. Giri, J.C. Duda, C.J. Szwejkowski, C. Constantin, H.J. Brown-Shaklee, J.F. Ihlefeld, and P.E. Hopkins, Thermal boundary conductance accumulation and interfacial phonon transmission: Measurements and theory, Phys. Rev. B, 91(2015), No. 3, art. No. 035432. |
| [32] |
S. Sadasivam, N. Ye, J.P. Feser, J. Charles, K. Miao, T. Kubis, and T.S. Fisher, Thermal transport across metal silicide-silicon interfaces: First-principles calculations and Green’s function transport simulations, Phys. Rev. B, 95(2017), No. 8, art. No. 085310. |
| [33] |
Y. Wang, Z.X. Lu, A.K. Roy, and X.L. Ruan, Effect of interlayer on interfacial thermal transport and hot electron cooling in metal-dielectric systems: An electron-phonon coupling perspective, J. Appl. Phys., 119(2016), No. 6, art. No. 065103. |
| [34] |
Y. Wang, X.L. Ruan, and A.K. Roy, Two-temperature nonequilibrium molecular dynamics simulation of thermal transport across metal-nonmetal interfaces, Phys. Rev. B, 85(2012), No. 20, art. No. 205311. |
| [35] |
|
| [36] |
X.B. Li and R.G. Yang, Effect of lattice mismatch on phonon transmission and interface thermal conductance across dissimilar material interfaces, Phys. Rev. B, 86(2012), No. 5, art. No. 054305. |
| [37] |
S. Merabia and K. Termentzidis, Thermal conductance at the interface between crystals using equilibrium and nonequilibrium molecular dynamics, Phys. Rev. B, 86(2012), No. 9, art. No. 094303. |
| [38] |
|
| [39] |
|
| [40] |
B.C. Gundrum, D.G. Cahill, and R.S. Averback, Thermal conductance of metal-metal interfaces, Phys. Rev. B, 72(2005), No. 24, art. No. 245426. |
| [41] |
M. Blank, G. Schneider, J. Ordonez-Miranda, and L. Weber, Role of the electron-phonon coupling on the thermal boundary conductance of metal/diamond interfaces with nanometric interlayers, J. Appl. Phys., 126(2019), No. 16, art. No. 165302. |
| [42] |
P.E. Hopkins, J.L. Kassebaum, and P.M. Norris, Effects of electron scattering at metal-nonmetal interfaces on electron-phonon equilibration in gold films, J. Appl. Phys., 105(2009), No. 2, art. No. 023710. |
| [43] |
|
| [44] |
Z.B. Lin, L.V. Zhigilei, and V. Celli, Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium, Phys. Rev. B, 77(2008), No. 7, art. No. 075133. |
| [45] |
L. Guo, S.L. Hodson, T.S. Fisher, and X.F. Xu, Heat transfer across metal-dielectric interfaces during ultrafast-laser heating, J. Heat Transfer, 134(2012), No. 4, art. No. 042402. |
| [46] |
|
| [47] |
J.B. Liang, S. Masuya, M. Kasu, and N. Shigekawa, Realization of direct bonding of single crystal diamond and Si substrates, Appl. Phys. Lett., 110(2017), No. 11, art. No. 111603. |
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
L.P. Zeng, K.C. Collins, Y.J. Hu, M.N. Luckyanova, A.A. Maznev, S. Huberman, V. Chiloyan, J. Zhou, X. Huang, K.A. Nelson, and G. Chen, Measuring phonon mean free path distributions by probing quasiballistic phonon transport in grating nanostructures, Sci. Rep., 5(2015), art. No. 17131. |
| [52] |
K.T. Regner, D.P. Sellan, Z.H. Su, C.H. Amon, A.J.H. McGaughey, and J.A. Malen, Broadband phonon mean free path contributions to thermal conductivity measured using frequency domain thermoreflectance, Nat. Commun., 4(2013), art. No. 1640. |
| [53] |
R. Anufriev, A. Ramiere, J. Maire, and M. Nomura, Heat guiding and focusing using ballistic phonon transport in phononic nanostructures, Nat. Commun., 8(2017), art. No. 15505. |
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
M. Kida, L. Weber, C. Monachon, and A. Mortensen, Thermal conductivity and interfacial conductance of AlN particle reinforced metal matrix composites, J. Appl. Phys., 109(2011), No. 6, art. No. 064907. |
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
T. Saito, O. Matsuda, and O.B. Wright, Picosecond acoustic phonon pulse generation in nickel and chromium, Phys. Rev. B, 67(2003), No. 20, art. No. 205421. |
| [66] |
J. Lombard, F. Detcheverry, and S. Merabia, Influence of the electron-phonon interfacial conductance on the thermal transport at metal/dielectric interfaces, J. Phys.: Condens. Matter, 27(2015), No. 1, art. No. 015007. |
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
Y. Ezzahri and A. Shakouri, Ballistic and diffusive transport of energy and heat in metals, Phys. Rev. B, 79(2009), No. 18, art. No. 184303. |
| [72] |
|
| [73] |
|
| [74] |
M. Saghebfar, M.K. Tehrani, S.M.R. Darbani, and A.E. Majd, Femtosecond pulse laser ablation of chromium: Experimental results and two-temperature model simulations, Appl. Phys. A, 123(2017), No. 1, art. No. 28. |
| [75] |
D. Gall, Electron mean free path in elemental metals, J. Appl. Phys., 119(2016), No. 8, art. No. 085101. |
| [76] |
|
| [77] |
|
| [78] |
D.G. Cahill, P.V. Braun, G. Chen, D.R. Clarke, S.H. Fan, K.E. Goodson, P. Keblinski, W.P. King, G.D. Mahan, A. Majumdar, H.J. Maris, S.R. Phillpot, E. Pop, and L. Shi, Nanoscale thermal transport. II. 2003–2012, Appl. Phys. Rev., 1(2014), No. 1, art. No. 011305. |
| [79] |
|
| [80] |
|
| [81] |
|
| [82] |
|
| [83] |
|
| [84] |
|
| [85] |
|
| [86] |
N. Stojanovic, D.H.S. Maithripala, J.M. Berg, and M. Holtz, Thermal conductivity in metallic nanostructures at high temperature: Electrons, phonons, and the Wiedemann-Franz law, Phys. Rev. B, 82(2010), No. 7, art. No. 075418. |
| [87] |
H.C. Chien, D.J. Yao, and C.T. Hsu, Measurement and evaluation of the interfacial thermal resistance between a metal and a dielectric, Appl. Phys. Lett., 93(2008), No. 23, art. No. 231910. |
| [88] |
H. Belmabrouk, H. Rezgui, F. Nasri, M.F.B. Aissa, and A.A. Guizani, Interfacial heat transport across multilayer nanofilms in ballistic-diffusive regime, Eur. Phys. J. Plus, 135(2020), No. 1, art. No. 109. |
| [89] |
|
| [90] |
|
/
| 〈 |
|
〉 |