Review of silicon-based alloys for lithium-ion battery anodes
Zhi-yuan Feng , Wen-jie Peng , Zhi-xing Wang , Hua-jun Guo , Xin-hai Li , Guo-chun Yan , Jie-xi Wang
International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (10) : 1549 -1564.
Review of silicon-based alloys for lithium-ion battery anodes
Silicon (Si) is widely considered to be the most attractive candidate anode material for use in next-generation high-energy-density lithium (Li)-ion batteries (LIBs) because it has a high theoretical gravimetric Li storage capacity, relatively low lithiation voltage, and abundant resources. Consequently, massive efforts have been exerted to improve its electrochemical performance. While some progress in this field has been achieved, a number of severe challenges, such as the element’s large volume change during cycling, low intrinsic electronic conductivity, and poor rate capacity, have yet to be solved. Methods to solve these problems have been attempted via the development of nanosized Si materials. Unfortunately, reviews summarizing the work on Si-based alloys are scarce. Herein, the recent progress related to Si-based alloy anode materials is reviewed. The problems associated with Si anodes and the corresponding strategies used to address these problems are first described. Then, the available Si-based alloys are divided into Si/Li-active and inactive systems, and the characteristics of these systems are discussed. Other special systems are also introduced. Finally, perspectives and future outlooks are provided to enable the wider application of Si-alloy anodes to commercial LIBs.
silicon / alloy / anode / lithium-ion battery
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
R. Marom, S.F. Amalraj, N. Leifer, D. Jacob, and D. Aurbach, A review of advanced and practical lithium battery materials, J. Mater. Chem., 21(2011), No. 27, art. No. 9938. |
| [14] |
|
| [15] |
|
| [16] |
Z. Yan and J.C. Guo, High-performance silicon-carbon anode material via aerosol spray drying and magnesiothermic reduction, Nano Energy, 63(2019), art. No. 103845. |
| [17] |
L.L. Ma, D.S. Guan, F.F. Wang, and C. Yuan, Environmental emissions from chemical etching synthesis of silicon nanotube for lithium ion battery applications, J. Manuf. Mater. Process., 2(2018), No. 1, art. No. 11. |
| [18] |
|
| [19] |
S.S. Zhu, J.B. Zhou, Y. Guan, W.L. Cai, Y.Y. Zhao, Y.C. Zhu, L.Q. Zhu, Y.C. Zhu, and Y.T. Qian, Hierarchical graphene-scaffolded silicon/graphite composites as high performance anodes for lithium-ion batteries, Small, 14(2018), No. 47, art. No. 1802457. |
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
L. Sun, J. Xie, and Z. Jin, Different dimensional nanostructured silicon materials: From synthesis methodology to application in high-energy lithium-ion batteries, Energy Technol., 7(2019), No. 11, art. No. 1900962. |
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
J. Li and J.R. Dahn, An in situ X-ray diffraction study of the reaction of Li with crystalline Si, J. Electrochem. Soc., 154(2007), No. 3, art. No. A156. |
| [28] |
T.D. Hatchard and J.R. Dahn, In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon, J. Electrochem. Soc., 151(2004), No. 6, art. No. A838. |
| [29] |
M.N. Obrovac and L. Christensen, Structural changes in silicon anodes during lithium insertion/extraction, Electrochem. Solid-State Lett., 7(2004), No. 5, art. No. A93. |
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
I.S. Kim, P.N. Kumta, and G.E. Blomgren, Si/TiN nanocomposites novel anode materials for Li-ion batteries, Electrochem. Solid-State Lett., 3(1999), No. 11, art. No. 493. |
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
M. Gauthier, D. Mazouzi, D. Reyter, B. Lestriez, P. Moreau, D. Guyomard, and L. Roué, A low-cost and high performance ball-milled Si-based negative electrode for high-energy Li-ion batteries, Energy Environ. Sci., 6(2013), No. 7, art. No. 2145. |
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
N. Bensalah, M. Matalkeh, N.K. Mustafa, and H. Merabet, Binary Si-Ge alloys as high-capacity anodes for Li-ion batteries, Phys. Status Solidi A, 217(2020), No. 1, art. No. 1900414. |
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
A. Varzi, L. Mattarozzi, S. Cattarin, P. Guerriero, and S. Passerini, Batteries: 3D porous Cu-Zn alloys as alternative anode materials for Li-ion batteries with superior low T performance, Adv. Energy Mater., 8(2018), No. 1, art. No. 1870001. |
| [65] |
Z.Z. Chen, X.R. Wang, T.Z. Jian, J.G. Hou, J.H. Zhou, and C.X. Xu, One-step mild fabrication of branch-like multimodal porous Si/Zn composites as high performance anodes for Li-ion batteries, Solid State Ionics, 354(2020), art. No. 115406. |
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
W.W. Li, J. Liao, X.W. Li, L. Zhang, B.T. Zhao, Y. Chen, Y.C. Zhou, Z.P. Guo, and M.L. Liu, Zn(Cu)Si2+xP3 solid solution anodes for high-performance Li-ion batteries with tunable working potentials, Adv. Funct. Mater., 29(2019), No. 34, art. No. 1903638. |
| [70] |
J.P. Maranchi, A.F. Hepp, A.G. Evans, N.T. Nuhfer, and P.N. Kumta, Interfacial properties of the a-SiCu: Active-inactive thin-film anode system for lithium-ion batteries, J. Electrochem. Soc., 153(2006), No. 6, art. No. A1246. |
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
M.D. Fleischauer, J.M. Topple, and J.R. Dahn, Combinatorial investigations of Si-M (M = Cr + Ni, Fe, Mn) thin film negative electrode materials, Electrochem. Solid-State Lett., 8(2005), No. 2, art. No. A137. |
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
|
| [80] |
|
| [81] |
|
| [82] |
|
| [83] |
|
| [84] |
|
| [85] |
|
| [86] |
|
| [87] |
|
| [88] |
|
| [89] |
|
| [90] |
|
| [91] |
Y. Zhou, M.R. Su, A.C. Dou, and Y.J. Liu, Facile synthesis of Si/NiSi2/C composite derived from metal-organic frameworks for high-performance lithium-ion battery anode, J. Electroanal. Chem., 873(2020), art. No. 114398. |
| [92] |
|
| [93] |
|
| [94] |
|
| [95] |
|
| [96] |
|
| [97] |
|
| [98] |
|
| [99] |
G.L. Lu, F.H. Liu, X. Chen, and J.F. Yang, Cu nanowire wrapped and Cu3Si anchored Si@Cu quasi core-shell composite microsized particles as anode materials for Li-ion batteries, J. Alloys Compd., 809(2019), art. No. 151750. |
| [100] |
|
| [101] |
S.C. Hou, T.Y. Chen, Y.H. Wu, H.Y. Chen, X.D. Lin, Y.Q. Chen, J.L. Huang, and C.C. Chang, Mechanochemical synthesis of Si/Cu3Si-based composite as negative electrode materials for lithium ion battery, Sci. Rep., 8(2018), art. No. 12695. |
| [102] |
|
| [103] |
S.S. Lee, K.H. Nam, H. Jung, and C.M. Park, Si-based composite interconnected by multiple matrices for high-performance Li-ion battery anodes, Chem. Eng. J., 381(2020), art. No. 122619. |
| [104] |
I.S. Aminu, H. Geaney, S. Imtiaz, T.E. Adegoke, N. Kapuria, G.A. Collins, and K.M. Ryan, A copper silicide nanofoam current collector for directly grown Si nanowire networks and their application as lithium-ion anodes, Adv. Funct. Mater., 30(2020), No. 38, art. No. 2003278. |
| [105] |
|
| [106] |
|
| [107] |
|
| [108] |
J.F. Guo, S.E. Pei, Z.S. He, L.A. Huang, T.Z. Lu, J.J. Gong, H.B. Shao, and J.M. Wang, Novel porous Si-Cu3Si-Cu micro-sphere composites with excellent electrochemical lithium storage, Electrochim. Acta, 348(2020), art. No. 136334. |
| [109] |
|
| [110] |
|
| [111] |
|
| [112] |
|
| [113] |
H.W. Park, J.H. Song, H. Choi, J.S. Jin, and H.T. Lim, Anode performance of lithium-silicon alloy prepared by mechanical alloying for use in all-solid-state lithium secondary batteries, Jpn. J. Appl. Phys., 53(2014), No. 8S3, art. No. 08NK02. |
| [114] |
|
| [115] |
|
| [116] |
|
| [117] |
I.S. Kim, G.E. Blomgren, and P.N. Kumta, Nanostructured Si/TiB2 composite anodes for Li-ion batteries, Electrochem. Solid-State Lett., 6(2003), No. 8, art. No. A157. |
| [118] |
|
| [119] |
|
| [120] |
|
| [121] |
|
| [122] |
|
| [123] |
|
| [124] |
|
/
| 〈 |
|
〉 |