Review of silicon-based alloys for lithium-ion battery anodes

Zhi-yuan Feng , Wen-jie Peng , Zhi-xing Wang , Hua-jun Guo , Xin-hai Li , Guo-chun Yan , Jie-xi Wang

International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (10) : 1549 -1564.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (10) : 1549 -1564. DOI: 10.1007/s12613-021-2335-x
Invited Review

Review of silicon-based alloys for lithium-ion battery anodes

Author information +
History +
PDF

Abstract

Silicon (Si) is widely considered to be the most attractive candidate anode material for use in next-generation high-energy-density lithium (Li)-ion batteries (LIBs) because it has a high theoretical gravimetric Li storage capacity, relatively low lithiation voltage, and abundant resources. Consequently, massive efforts have been exerted to improve its electrochemical performance. While some progress in this field has been achieved, a number of severe challenges, such as the element’s large volume change during cycling, low intrinsic electronic conductivity, and poor rate capacity, have yet to be solved. Methods to solve these problems have been attempted via the development of nanosized Si materials. Unfortunately, reviews summarizing the work on Si-based alloys are scarce. Herein, the recent progress related to Si-based alloy anode materials is reviewed. The problems associated with Si anodes and the corresponding strategies used to address these problems are first described. Then, the available Si-based alloys are divided into Si/Li-active and inactive systems, and the characteristics of these systems are discussed. Other special systems are also introduced. Finally, perspectives and future outlooks are provided to enable the wider application of Si-alloy anodes to commercial LIBs.

Keywords

silicon / alloy / anode / lithium-ion battery

Cite this article

Download citation ▾
Zhi-yuan Feng, Wen-jie Peng, Zhi-xing Wang, Hua-jun Guo, Xin-hai Li, Guo-chun Yan, Jie-xi Wang. Review of silicon-based alloys for lithium-ion battery anodes. International Journal of Minerals, Metallurgy, and Materials, 2021, 28(10): 1549-1564 DOI:10.1007/s12613-021-2335-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhang J, Gu P, Xu J, Xue HG, Pang H. High performance of electrochemical lithium storage batteries: ZnO-based nanomaterials for lithium-ion and lithium-sulfur batteries. Nanoscale, 2016, 8(44): 18578.

[2]

Gui X, Hao GD, Jiang WF. A comprehensive review of Cr, Ti-based anode materials for Li-ion batteries. Ionics, 2020, 26(3): 1081.

[3]

Klankowski SA, Rojeski RA, Cruden BA, Liu JW, Wu J, Li J. A high-performance lithium-ion battery anode based on the core-shell heterostructure of silicon-coated vertically aligned carbon nanofibers. J. Mater. Chem. A, 2013, 1(4): 1055.

[4]

Xiang YY, Li JS, Lei JH, Liu D, Xie ZZ, Qu DY, Li K, Deng TF, Tang HL. Advanced separators for lithiumion and lithium-sulfur batteries: A review of recent progress. ChemSusChem, 2016, 9(21): 3023.

[5]

Wang LF, Geng MM, Ding XN, Fang C, Zhang Y, Shi SS, Zheng Y, Yang K, Zhan C, Wang XD. Research progress of the electrochemical impedance technique applied to the high-capacity lithium-ion battery. Int. J. Miner. Metall. Mater., 2021, 28(4): 538.

[6]

Iqbal A, Chen L, Chen Y, Gao YX, Chen F, Li DC. Lithium-ion full cell with high energy density using nickel-rich LiNi0.8Co0.1Mn0.1O2 cathode and SiO-C composite anode. Int. J. Miner. Metall. Mater., 2018, 25(12): 1473.

[7]

Shen XH, Tian ZY, Fan RJ, Shao L, Zhang DP, Cao GL, Kou L, Bai YZ. Research progress on silicon/carbon composite anode materials for lithium-ion battery. J. Energy Chem., 2018, 27(4): 1067.

[8]

Lu J, Chen ZW, Pan F, Cui Y, Amine K. High-performance anode materials for rechargeable lithium-ion batteries. Electrochem. Energy Rev., 2018, 1(1): 35.

[9]

Li P, Zhao GQ, Zheng XB, Xu X, Yao CH, Sun WP, Dou SX. Recent progress on silicon-based anode materials for practical lithium-ion battery applications. Energy Storage Mater., 2018, 15, 422.

[10]

Obrovac MN, Chevrier VL. Alloy negative electrodes for Li-ion batteries. Chem. Rev., 2014, 114(23): 11444.

[11]

Park CM, Kim JH, Kim H, Sohn HJ. Li-alloy based anode materials for Li secondary batteries. Chem. Soc. Rev., 2010, 39(8): 3115.

[12]

Bhatt MD, Lee JY. High capacity conversion anodes in Li-ion batteries: A review. Int. J. Hydrogen Energy, 2019, 44(21): 10852.

[13]

R. Marom, S.F. Amalraj, N. Leifer, D. Jacob, and D. Aurbach, A review of advanced and practical lithium battery materials, J. Mater. Chem., 21(2011), No. 27, art. No. 9938.

[14]

Ma DL, Cao ZY, Hu AM. Si-based anode materials for Li-ion batteries: A mini review. Nano Micro Lett., 2014, 6(4): 347.

[15]

Park BH, Jeong JH, Lee GW, Kim YH, Roh KC, Kim KB. Highly conductive carbon nanotube micro-spherical network for high-rate silicon anode. J. Power Sources, 2018, 394, 94.

[16]

Z. Yan and J.C. Guo, High-performance silicon-carbon anode material via aerosol spray drying and magnesiothermic reduction, Nano Energy, 63(2019), art. No. 103845.

[17]

L.L. Ma, D.S. Guan, F.F. Wang, and C. Yuan, Environmental emissions from chemical etching synthesis of silicon nanotube for lithium ion battery applications, J. Manuf. Mater. Process., 2(2018), No. 1, art. No. 11.

[18]

Ngo DT, Le HTT, Pham XM, Park CN, Park CJ. Facile synthesis of Si@SiC composite as an anode material for lithium-ion batteries. ACS Appl. Mater. Interfaces, 2017, 9(38): 32790.

[19]

S.S. Zhu, J.B. Zhou, Y. Guan, W.L. Cai, Y.Y. Zhao, Y.C. Zhu, L.Q. Zhu, Y.C. Zhu, and Y.T. Qian, Hierarchical graphene-scaffolded silicon/graphite composites as high performance anodes for lithium-ion batteries, Small, 14(2018), No. 47, art. No. 1802457.

[20]

Du FH, Wang KX, Chen JS. Strategies to succeed in improving the lithium-ion storage properties of silicon nanomaterials. J. Mater. Chem. A, 2016, 4(1): 32.

[21]

Kasavajjula U, Wang CS, Appleby AJ. Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J. Power Sources, 2007, 163(2): 1003.

[22]

Rahman MA, Song GS, Bhatt AI, Wong YC, Wen CE. Nanostructured silicon anodes for high-performance lithium-ion batteries. Adv. Funct. Mater., 2016, 26(5): 647.

[23]

L. Sun, J. Xie, and Z. Jin, Different dimensional nanostructured silicon materials: From synthesis methodology to application in high-energy lithium-ion batteries, Energy Technol., 7(2019), No. 11, art. No. 1900962.

[24]

Zhu XY, Yang DJ, Li JJ, Su FB. Nanostructured Si-based anodes for lithium-ion batteries. J. Nanosci. Nanotechnol., 2015, 15(1): 15.

[25]

Ashuri M, He QR, Shaw LL. Silicon as a potential anode material for Li-ion batteries: Where size, geometry and structure matter. Nanoscale, 2016, 8(1): 74.

[26]

Wang JT, Yang JY, Lu SG. A mini review: Nanostructured silicon-based materials for lithium ion battery. Nanosci. Nanotechnol. — Asia, 2016, 6(1): 3.

[27]

J. Li and J.R. Dahn, An in situ X-ray diffraction study of the reaction of Li with crystalline Si, J. Electrochem. Soc., 154(2007), No. 3, art. No. A156.

[28]

T.D. Hatchard and J.R. Dahn, In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon, J. Electrochem. Soc., 151(2004), No. 6, art. No. A838.

[29]

M.N. Obrovac and L. Christensen, Structural changes in silicon anodes during lithium insertion/extraction, Electrochem. Solid-State Lett., 7(2004), No. 5, art. No. A93.

[30]

Shimizu M, Usui H, Suzumura T, Sakaguchi H. Analysis of the deterioration mechanism of Si electrode as a Li-ion battery anode using Raman microspectroscopy. J. Phys. Chem. C, 2015, 119(6): 2975.

[31]

Wu H, Cui Y. Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today, 2012, 7(5): 414.

[32]

Zhang WJ. Lithium insertion/extraction mechanism in alloy anodes for lithium-ion batteries. J. Power Sources, 2011, 196(3): 877.

[33]

Anani A, Huggins RA. Multinary alloy electrodes for solid state batteries I. A phase diagram approach for the selection and storage properties determination of candidate electrode materials. J. Power Sources, 1992, 38(3): 351.

[34]

Liu YX, Sun W, Lan XX, Hu RZ, Cui J, Liu J, Liu JW, Zhang Y, Zhu M. Adding metal carbides to suppress the crystalline Li15Si4 formation: A route toward cycling durable Si-based anodes for lithium-ion batteries. ACS Appl. Mater. Interfaces, 2019, 11(42): 38727.

[35]

Yang J, Lin YH, Guo BS, Wang MS, Chen JC, Ma ZY, Huang Y, Li X. Enhanced electrochemical performance of Si/C electrode through surface modification using SrF2 particle. Int. J. Miner. Metall. Mater., 2021, 28(10): 1621

[36]

Du QK, Wu QX, Wang HX, Meng XJ, Ji ZK, Zhao S, Zhu WW, Liu C, Ling M, Ling CD. Metallurgy, Carbon dot-modified silicon nanoparticles for lithium ion batteries. Int. J. Miner. Metall. Mater., 2021, 28(10): 1603

[37]

Lee KM, Lee YS, Kim YW, Sun YK, Lee SM. Electrochemical characterization of Ti-Si and Ti-Si-Al alloy anodes for Li-ion batteries produced by mechanical ball milling. J. Alloys Compd., 2009, 472(1–2): 461.

[38]

I.S. Kim, P.N. Kumta, and G.E. Blomgren, Si/TiN nanocomposites novel anode materials for Li-ion batteries, Electrochem. Solid-State Lett., 3(1999), No. 11, art. No. 493.

[39]

Jo MR, Heo YU, Lee YC, Kang YM. A nano-Si/FeSi2Ti hetero-structure with structural stability for highly reversible lithium storage. Nanoscale, 2014, 6(2): 1005.

[40]

Ji LW, Zhang XW. Fabrication of porous carbon/Si composite nanofibers as high-capacity battery electrodes. Electrochem. Commun., 2009, 11(6): 1146.

[41]

Chen SQ, Bao PT, Huang XD, Sun B, Wang GX. Hierarchical 3D mesoporous silicon@graphene nanoarchitectures for lithium ion batteries with superior performance. Nano Res., 2014, 7(1): 85.

[42]

Qiao YJ, Zhang H, Hu YX, Li WP, Liu WJ, Shang HM, Qu MZ, Peng GC, Xie ZW. A chain-like compound of Si@CNTs nanostructure and MOF-derived porous carbon as anode for Li-ion batteries. Int. J. Miner. Metall. Mater., 2021, 28(10): 1611

[43]

Gowda SR, Pushparaj V, Herle S, Girishkumar G, Gordon JG, Gullapalli H, Zhan XB, Ajayan PM, Reddy ALM. Three-dimensionally engineered porous silicon electrodes for Li ion batteries. Nano Lett., 2012, 12(12): 6060.

[44]

M. Gauthier, D. Mazouzi, D. Reyter, B. Lestriez, P. Moreau, D. Guyomard, and L. Roué, A low-cost and high performance ball-milled Si-based negative electrode for high-energy Li-ion batteries, Energy Environ. Sci., 6(2013), No. 7, art. No. 2145.

[45]

Guo LF, Zhang SY, Xie J, Zhen D, Jin Y, Wan KY, Zhuang DG, Zheng WQ, Zhao XB. Controlled synthesis of nanosized Si by magnesiothermic reduction from diatomite as anode material for Li-ion batteries. Int. J. Miner. Metall. Mater., 2020, 27(4): 515.

[46]

Li T, Yang JY, Lu SG. Effect of modified elastomeric binders on the electrochemical properties of silicon anodes for lithium-ion batteries. Int. J. Miner. Metall. Mater., 2012, 19(8): 752.

[47]

Liu XH, Zhong L, Huang S, Mao SX, Zhu T, Huang JY. Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano, 2012, 6(2): 1522.

[48]

Ryu I, Choi JW, Cui Y, Nix WD. Size-dependent fracture of Si nanowire battery anodes. J. Mech. Phys. Solids, 2011, 59(9): 1717.

[49]

Wang C, Wen JC, Luo F, Quan BG, Li H, Wei YJ, Gu CZ, Li JJ. Anisotropic expansion and size-dependent fracture of silicon nanotubes during lithiation. J. Mater. Chem. A, 2019, 7(25): 15113.

[50]

Chen Y, Zeng S, Qian JF, Wang YD, Cao YL, Yang HX, Ai XP. Li+-conductive polymer-embedded nano-Si particles as anode material for advanced Li-ion batteries. ACS Appl. Mater. Interfaces, 2014, 6(5): 3508.

[51]

Zhang WJ. A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J. Power Sources, 2011, 196(1): 13.

[52]

Wolfenstine J. CaSi2 as an anode for lithium-ion batteries. J. Power Sources, 2003, 124(1): 241.

[53]

Kim H, Choi J, Sohn HJ, Kang T. The insertion mechanism of lithium into Mg2Si anode material for Li-ion batteries. J. Electrochem. Soc., 1999, 146(12): 4401.

[54]

Moriga T, Watanabe K, Tsuji D, Massaki S, Nakabayashi I. Reaction mechanism of metal silicide Mg2Si for Li insertion. J. Solid State Chem., 2000, 153(2): 386.

[55]

Roberts GA, Cairns EJ, Reimer JA. Magnesium silicide as a negative electrode material for lithium-ion batteries. J. Power Sources, 2002, 110(2): 424.

[56]

Fuller CS, Severiens JC. Mobility of impurity ions in germanium and silicon. Phys. Rev., 1954, 96(1): 21.

[57]

Kim H, Son Y, Park C, Lee MJ, Hong MS, Kim J, Lee M, Cho J, Choi HC. Germanium silicon alloy anode material capable of tunable overpotential by nanoscale Si segregation. Nano Lett., 2015, 15(6): 4135.

[58]

Yang YH, Liu S, Bian XF, Feng JK, An YL, Yuan C. Morphology- and porosity-tunable synthesis of 3D nanoporous SiGe alloy as a high-performance lithium-ion battery anode. ACS Nano, 2018, 12(3): 2900.

[59]

N. Bensalah, M. Matalkeh, N.K. Mustafa, and H. Merabet, Binary Si-Ge alloys as high-capacity anodes for Li-ion batteries, Phys. Status Solidi A, 217(2020), No. 1, art. No. 1900414.

[60]

Duveau D, Fraisse B, Cunin F, Monconduit L. Synergistic effects of Ge and Si on the performances and mechanism of the GexSi1−x electrodes for Li ion batteries. Chem. Mater., 2015, 27(9): 3226.

[61]

Abel PR, Chockla AM, Lin YM, Holmberg VC, Harris JT, Korgel BA, Heller A, Mullins CB. Nanostructured Si(1−x)Gex for tunable thin film lithium-ion battery anodes. ACS Nano, 2013, 7(3): 2249.

[62]

Stokes K, Flynn G, Geaney H, Bree G, Ryan KM. Axial Si-Ge heterostructure nanowires as lithium-ion battery anodes. Nano Lett., 2018, 18(9): 5569.

[63]

Ahn J, Kim B, Jang G, Moon J. Magnesiothermic reduction-enabled synthesis of Si-Ge alloy nanoparticles with a canyon-like surface structure for Li-ion battery. ChemElectroChem, 2018, 5(19): 2729.

[64]

A. Varzi, L. Mattarozzi, S. Cattarin, P. Guerriero, and S. Passerini, Batteries: 3D porous Cu-Zn alloys as alternative anode materials for Li-ion batteries with superior low T performance, Adv. Energy Mater., 8(2018), No. 1, art. No. 1870001.

[65]

Z.Z. Chen, X.R. Wang, T.Z. Jian, J.G. Hou, J.H. Zhou, and C.X. Xu, One-step mild fabrication of branch-like multimodal porous Si/Zn composites as high performance anodes for Li-ion batteries, Solid State Ionics, 354(2020), art. No. 115406.

[66]

Saager S, Scheffel B, Zywitzki O, Modes T, Piwko M, Doerfler S, Althues H, Metzner C. Porous silicon thin films as anodes for lithium ion batteries deposited by co-evaporation of silicon and zinc. Surf. Coat. Technol., 2019, 358, 586.

[67]

Alcántara R, Tillard-Charbonnel M, Spina L, Belin C, Tirado JL. Electrochemical reactions of lithium with Li2ZnGe and Li2ZnSi. Electrochimica Acta, 2002, 47(7): 1115.

[68]

Li WW, Li XW, Liao J, Zhao BT, Zhang L, Huang L, Liu GP, Guo ZP, Liu ML. A new family of cation-disordered Zn(Cu)-Si-P compounds as high-performance anodes for next-generation Li-ion batteries. Energy Environ. Sci., 2019, 12(7): 2286.

[69]

W.W. Li, J. Liao, X.W. Li, L. Zhang, B.T. Zhao, Y. Chen, Y.C. Zhou, Z.P. Guo, and M.L. Liu, Zn(Cu)Si2+xP3 solid solution anodes for high-performance Li-ion batteries with tunable working potentials, Adv. Funct. Mater., 29(2019), No. 34, art. No. 1903638.

[70]

J.P. Maranchi, A.F. Hepp, A.G. Evans, N.T. Nuhfer, and P.N. Kumta, Interfacial properties of the a-SiCu: Active-inactive thin-film anode system for lithium-ion batteries, J. Electrochem. Soc., 153(2006), No. 6, art. No. A1246.

[71]

Wang GX, Sun L, Bradhurst DH, Zhong S, Dou SX, Liu HK. Innovative nanosize lithium storage alloys with silica as active centre. J. Power Sources, 2000, 88(2): 278.

[72]

Chen Y, Qian JF, Cao YL, Yang HX, Ai XP. Green synthesis and stable Li-storage performance of FeSi2/Si@C nanocomposite for lithium-ion batteries. ACS Appl. Mater. Interfaces, 2012, 4(7): 3753.

[73]

Wang XY, Wen ZY, Liu Y, Huang LZ, Wu MF. Study on Si-Ti alloy dispersed in a glassy matrix as an anode material for lithium-ion batteries. J. Alloys Compd., 2010, 506(1): 317.

[74]

M.D. Fleischauer, J.M. Topple, and J.R. Dahn, Combinatorial investigations of Si-M (M = Cr + Ni, Fe, Mn) thin film negative electrode materials, Electrochem. Solid-State Lett., 8(2005), No. 2, art. No. A137.

[75]

Kwon HT, Park AR, Lee SS, Cho H, Jung H, Park CM. Nanostructured Si-FeSi2-graphite-C composite: An optimized and practical solution for Si-based anodes for superior Li-ion batteries. J. Electrochem. Soc., 2019, 166(10): A2221.

[76]

Yoon S, Lee SI, Kim H, Sohn HJ. Enhancement of capacity of carbon-coated Si-Cu3Si composite anode using metal-organic compound for lithium-ion batteries. J. Power Sources, 2006, 161(2): 1319.

[77]

Deng L, Wu ZY, Yin ZW, Lu YQ, Huang ZG, You JH, Li JT, Huang L, Sun SG. High-performance SiMn/C composite anodes with integrating inactive Mn4Si7 alloy for lithium-ion batteries. Electrochim. Acta, 2018, 260, 830.

[78]

Domi Y, Usui H, Takaishi R, Sakaguchi H. Lithiation and delithiation reactions of binary silicide electrodes in an ionic liquid electrolyte as novel anodes for lithium-ion batteries. ChemElectroChem, 2019, 6(2): 581.

[79]

Doh CH, Kalaiselvi N, Park CW, Jin BS, Moon SI, Yun MS. Synthesis and electrochemical characterization of novel high capacity Si3−xFexN4 anode for rechargeable lithium batteries. Electrochem. Commun., 2004, 6(10): 965.

[80]

Gao MX, Wang DS, Zhang XQ, Pan HG, Liu YF, Liang C, Shang CX, Guo ZX. A hybrid Si@FeSiy/SiOx anode structure for high performance lithium-ion batteries via ammonia-assisted one-pot synthesis. J. Mater. Chem. A, 2015, 3(20): 10767.

[81]

Li T, Cao YL, Ai XP, Yang HX. Cycleable graphite/FeSi6 alloy composite as a high capacity anode material for Li-ion batteries. J. Power Sources, 2008, 184(2): 473.

[82]

Ruttert M, Siozios V, Winter M, Placke T. Mechanochemical synthesis of Fe-Si-based anode materials for high-energy lithium ion full-cells. ACS Appl. Energy Mater., 2020, 3(1): 743.

[83]

Du ZJ, Ellis SN, Dunlap RA, Obrovac MN. NixSi1−x alloys prepared by mechanical milling as negative electrode materials for lithium ion batteries. J. Electrochem. Soc., 2015, 163(2): A13.

[84]

Ruttert M, Siozios V, Winter M, Placke T. Synthesis and comparative investigation of silicon transition metal silicide composite anodes for lithium ion batteries. Z. Anorg. Allg. Chem., 2019, 645(3): 248.

[85]

Zhang PX, Huang L, Li YL, Ren XZ, Deng LB, Yuan QH. Si/Ni3Si-encapulated carbon nanofiber composites as three-dimensional network structured anodes for lithium-ion batteries. Electrochim. Acta, 2016, 192, 385.

[86]

Jia HP, Stock C, Kloepsch R, He X, Badillo JP, Fromm O, Vortmann B, Winter M, Placke T. Facile synthesis and lithium storage properties of a porous NiSi2/Si/carbon composite anode material for lithium-ion batteries. ACS Appl. Mater. Interfaces, 2015, 7(3): 1508.

[87]

Chen M, Jing QS, Sun HB, Xu JQ, Yuan ZY, Ren JT, Ding AX, Huang ZY, Dong MY. Engineering the core-shell-structured NCNTs-Ni2Si@porous Si composite with robust Ni-Si interfacial bonding for high-performance Li-ion batteries. Langmuir, 2019, 35(19): 6321.

[88]

Umirov N, Seo DH, Kim T, Kim HY, Kim SS. Microstructure and electrochemical properties of rapidly solidified Si-Ni alloys as anode for lithium-ion batteries. J. Ind. Eng. Chem., 2019, 71, 351.

[89]

Han X, Chen HX, Li X, Lai SM, Xu YH, Li C, Chen SY, Yang Y. NiSix/a-Si nanowires with interfacial a-Ge as anodes for high-rate lithium-ion batteries. ACS Appl. Mater. Interfaces, 2016, 8(1): 673.

[90]

Liu QR, Gao Y, He PG, Yan C, Gao Y, Gao JZ, Lu HB, Yang ZB. Facile fabrication of hollow structured Si-Ni-C nanofabric anode for Li-ion battery. Mater. Lett., 2018, 231, 205.

[91]

Y. Zhou, M.R. Su, A.C. Dou, and Y.J. Liu, Facile synthesis of Si/NiSi2/C composite derived from metal-organic frameworks for high-performance lithium-ion battery anode, J. Electroanal. Chem., 873(2020), art. No. 114398.

[92]

Wang YK, Cao SM, Kalinina M, Zheng LT, Li LJ, Zhu M, Obrovac MN. Lithium insertion in nanostructured Si1−xTix alloys. J. Electrochem. Soc., 2017, 164(13): A3006.

[93]

Zhou S, Liu XH, Wang DW. Si/TiSi2 heteronanostructures as high-capacity anode material for Li ion batteries. Nano Lett., 2010, 10(3): 860.

[94]

Yan ZH, Oehring M, Bormann R. Metastable phase formation in mechanically alloyed and ball milled Ti-Si. J. Appl. Phys., 1992, 72(6): 2478.

[95]

Dong Z, Gu HT, Du WB, Feng ZH, Zhang CY, Jiang YZ, Zhu TJ, Chen GR, Chen J, Liu YF, Gao MX, Pan HG. Si/Ti3SiC2 composite anode with enhanced elastic modulus and high electronic conductivity for lithium-ion batteries. J. Power Sources, 2019, 431, 55.

[96]

Park HI, Sohn M, Choi JH, Park C, Kim JH, Kim H. Microstructural tuning of Si/TiFeSi2 nanocomposite as lithium storage materials by mechanical deformation. Electrochim. Acta, 2016, 210, 301.

[97]

NuLi YN, Wang BF, Yang J, Yuan XX, Ma ZF. Cu5Si-Si/C composites for lithium-ion battery anodes. J. Power Sources, 2006, 153(2): 371.

[98]

Ma WQ, Liu XZ, Wang X, Wang ZF, Zhang RE, Yuan ZH, Ding Y. Crystalline Cu-silicide stabilizes the performance of a high capacity Si-based Li-ion battery anode. J. Mater. Chem. A, 2016, 4(48): 19140.

[99]

G.L. Lu, F.H. Liu, X. Chen, and J.F. Yang, Cu nanowire wrapped and Cu3Si anchored Si@Cu quasi core-shell composite microsized particles as anode materials for Li-ion batteries, J. Alloys Compd., 809(2019), art. No. 151750.

[100]

Zheng ZM, Wu HH, Chen HX, Cheng Y, Zhang QB, Xie QS, Wang LS, Zhang KL, Wang MS, Peng DL, Zeng XC. Fabrication and understanding of Cu3Si-Si@carbon@graphene nanocomposites as high-performance anodes for lithium-ion batteries. Nanoscale, 2018, 10(47): 22203.

[101]

S.C. Hou, T.Y. Chen, Y.H. Wu, H.Y. Chen, X.D. Lin, Y.Q. Chen, J.L. Huang, and C.C. Chang, Mechanochemical synthesis of Si/Cu3Si-based composite as negative electrode materials for lithium ion battery, Sci. Rep., 8(2018), art. No. 12695.

[102]

Ren WF, Li JT, Zhang SJ, Lin AL, Chen YH, Gao ZG, Zhou Y, Deng L, Huang L, Sun SG. Fabrication of multi-shell coated silicon nanoparticles via in situ electroless deposition as high performance anodes for lithium ion batteries. J. Energy Chem., 2020, 48, 160.

[103]

S.S. Lee, K.H. Nam, H. Jung, and C.M. Park, Si-based composite interconnected by multiple matrices for high-performance Li-ion battery anodes, Chem. Eng. J., 381(2020), art. No. 122619.

[104]

I.S. Aminu, H. Geaney, S. Imtiaz, T.E. Adegoke, N. Kapuria, G.A. Collins, and K.M. Ryan, A copper silicide nanofoam current collector for directly grown Si nanowire networks and their application as lithium-ion anodes, Adv. Funct. Mater., 30(2020), No. 38, art. No. 2003278.

[105]

Woo JY, Kim AY, Kim MK, Lee SH, Sun YK, Liu GC, Lee JK. Cu3Si-doped porous-silicon particles prepared by simplified chemical vapor deposition method as anode material for high-rate and long-cycle lithium-ion batteries. J. Alloys Compd., 2017, 701, 425.

[106]

Zhang H, Xu H, Lou XF, Jin H, Zong P, Li SW, Bai Y, Ma F. Micro-structured Si@Cu3Si@C ternary composite anodes for high-performance Li-ion batteries. Ionics, 2019, 25(10): 4667.

[107]

Stokes K, Geaney H, Sheehan M, Borsa D, Ryan KM. Copper silicide nanowires as hosts for amorphous Si deposition as a route to produce high capacity lithium-ion battery anodes. Nano Lett., 2019, 19(12): 8829.

[108]

J.F. Guo, S.E. Pei, Z.S. He, L.A. Huang, T.Z. Lu, J.J. Gong, H.B. Shao, and J.M. Wang, Novel porous Si-Cu3Si-Cu micro-sphere composites with excellent electrochemical lithium storage, Electrochim. Acta, 348(2020), art. No. 136334.

[109]

Son SB, Kim SC, Kang CS, Yersak TA, Kim YC, Lee CG, Moon SH, Cho JS, Moon JT, Oh KH, Lee SH. A highly reversible nano-Si anode enabled by mechanical confinement in an electrochemically activated LixTi4Ni4Si7 matrix. Adv. Energy Mater., 2012, 2(10): 1226.

[110]

Lee KJ, Yu SH, Kim JJ, Lee DH, Park J, Suh SS, Cho JS, Sung YE. Si7Ti4Ni4 as a buffer material for Si and its electrochemical study for lithium ion batteries. J. Power Sources, 2014, 246, 729.

[111]

Li XM, Kersey-Bronec FE, Ke J, Cloud JE, Wang YL, Ngo C, Pylypenko S, Yang YG. Study of lithium silicide nanoparticles as anode materials for advanced lithium ion batteries. ACS Appl. Mater. Interfaces, 2017, 9(19): 16071.

[112]

Cloud JE, Wang YL, Li XM, Yoder TS, Yang Y, Yang YA. Lithium silicide nanocrystals: Synthesis, chemical stability, thermal stability, and carbon encapsulation. Inorg. Chem., 2014, 53(20): 11289.

[113]

H.W. Park, J.H. Song, H. Choi, J.S. Jin, and H.T. Lim, Anode performance of lithium-silicon alloy prepared by mechanical alloying for use in all-solid-state lithium secondary batteries, Jpn. J. Appl. Phys., 53(2014), No. 8S3, art. No. 08NK02.

[114]

Wang C, Han YY, Li SH, Chen T, Yu JM, Lu ZD. Thermal lithiated-TiO2: A robust and electron-conducting protection layer for Li-Si alloy anode. ACS Appl. Mater. Interfaces, 2018, 10(15): 12750.

[115]

Wang C, Yu JM, Li SH, Lu ZD. Boosting the cycling stability of LixSi alloy microparticles through electroless copper deposition. Chem. Eng. J., 2019, 370, 1019.

[116]

Guo ZP, Zhao ZW, Liu HK, Dou SX. Lithium insertion in Si-TiC nanocomposite materials produced by high-energy mechanical milling. J. Power Sources, 2005, 146(1–2): 190.

[117]

I.S. Kim, G.E. Blomgren, and P.N. Kumta, Nanostructured Si/TiB2 composite anodes for Li-ion batteries, Electrochem. Solid-State Lett., 6(2003), No. 8, art. No. A157.

[118]

Wang GQ, Wen ZS, Yang Y-E, Yin JP, Kong WQ, Li S, Sun JC, Ji SJ. Ultra-long life Si@rGO/g-C3N4 with a multiply synergetic effect as an anode material for lithiumion batteries. J. Mater. Chem. A., 2018, 6(17): 7557.

[119]

Loka C, Yu H, Lee KS, Cho J. Nanocomposite Si/(NiTi) anode materials synthesized by high-energy mechanical milling for lithium-ion rechargeable batteries. J. Power Sources, 2013, 244, 259.

[120]

Wang Y, Cao SM, Liu H, Zhu M, Obrovac MN. Si-TiN alloy Li-ion battery negative electrode materials made by N2 gas milling. MRS Commun., 2018, 8(3): 1352.

[121]

Cao YD, Scott B, Dunlap RA, Wang J, Obrovac MN. An investigation of the Fe-Mn-Si system for Li-ion battery negative electrodes. J. Electrochem. Soc., 2019, 166(2): A21.

[122]

Chae S, Ko M, Park S, Kim N, Ma J, Cho J. Micronsized Fe-Cu-Si ternary composite anodes for high energy Li-ion batteries. Energy Environ. Sci., 2016, 9(4): 1251.

[123]

MacEachern L, Dunlap RA, Obrovac MN. Mechanically milled Fe-Si-Zn alloys as negative electrodes for Li-ion batteries. J. Electrochem. Soc., 2015, 162(12): A2319.

[124]

Umirov N, Seo DH, Kim HY, Kim SS. Pragmatic approach to design silicon alloy anode by the equilibrium method. ACS Appl. Mater. Interfaces, 2020, 12(15): 17406.

AI Summary AI Mindmap
PDF

190

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/