Effect of trace yttrium on the microstructure, mechanical property and corrosion behavior of homogenized Mg—2Zn—0.1Mn—0.3Ca—xY biological magnesium alloy

Mingfan Qi , Liangyu Wei , Yuzhao Xu , Jin Wang , Aisen Liu , Bing Hao , Jicheng Wang

International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (9) : 1746 -1754.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (9) : 1746 -1754. DOI: 10.1007/s12613-021-2327-x
Article

Effect of trace yttrium on the microstructure, mechanical property and corrosion behavior of homogenized Mg—2Zn—0.1Mn—0.3Ca—xY biological magnesium alloy

Author information +
History +
PDF

Abstract

The effects of trace yttrium (Y) element on the microstructure, mechanical properties, and corrosion resistance of Mg—2Zn—0.1Mn—0.3Ca—xY (x = 0, 0.1, 0.2, 0.3) biological magnesium alloys are investigated. Results show that grain size decreases from 310 to 144 µm when Y content increases from 0wt% to 0.3wt%. At the same time, volume fraction of the second phase increases from 0.4% to 6.0%, yield strength of the alloy continues to increase, and ultimate tensile strength and elongation decrease initially and then increase. When the Y content increases to 0.3wt%, Mg3Zn6Y phase begins to precipitate in the alloy; thus, the alloy exhibits the most excellent mechanical property. At this time, its ultimate tensile strength, yield strength, and elongation are 119 MPa, 69 MPa, and 9.1%, respectively. In addition, when the Y content is 0.3wt%, the alloy shows the best corrosion resistance in the simulated body fluid (SBF). This investigation has revealed that the improvement of mechanical properties and corrosion resistance is mainly attributed to the grain refinement and the precipitated Mg3Zn6Y phase.

Keywords

trace yttrium / biological magnesium alloy / Mg3Zn6Y / microstructure / mechanical property / corrosion behavior

Cite this article

Download citation ▾
Mingfan Qi, Liangyu Wei, Yuzhao Xu, Jin Wang, Aisen Liu, Bing Hao, Jicheng Wang. Effect of trace yttrium on the microstructure, mechanical property and corrosion behavior of homogenized Mg—2Zn—0.1Mn—0.3Ca—xY biological magnesium alloy. International Journal of Minerals, Metallurgy, and Materials, 2022, 29(9): 1746-1754 DOI:10.1007/s12613-021-2327-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Su JL, Teng J, Xu ZL, Li Y. Biodegradable magnesium-matrix composites: A review. Int. J. Miner. Metall. Mater., 2020, 27(6): 724.

[2]

Razzaghi M, Kasiri-Asgarani M, Bakhsheshi-Rad HR, Ghayour H. In vitro bioactivity and corrosion of PLGA/hardystonite composite-coated magnesium-based nanocomposite for implant applications. Int. J. Miner. Metall. Mater., 2021, 28(1): 168.

[3]

Zhang Z, Zhang JH, Wang J, Li ZH, Xie JS, Liu SJ, Guan K, Wu RZ. Toward the development of Mg alloys with simultaneously improved strength and ductility by refining grain size via the deformation process. Int. J. Miner. Metall. Mater., 2021, 28(1): 30.

[4]

Staiger MP, Pietak AM, Huadmai J, Dias G. Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials, 2006, 27(9): 1728.

[5]

Yu MW, Li JY, Li JX, Wang J, Lai HY, Zhang Y. Effects of trace Sr on microstructure, mechanical properties and corrosion resistance of Mg—0.2Zn—0.1Mn—xSr biomaterials. Rare Met. Mater. Eng., 2019, 48(12): 4016

[6]

Xu YZ, Li JY, Qi MF, Liao LH, Gao ZJ. Enhanced mechanical properties of Mg-Zn-Y-Zr alloy by low-speed indirect extrusion. J. Mater. Res. Technol., 2020, 9(5): 9856.

[7]

Zhang RQ, Wang JF, Huang S, Liu SJ, Pan FS. Substitution of Ni for Zn on microstructure and mechanical properties of Mg-Gd-Y-Zn-Mn alloy. J. Magnes. Alloys, 2017, 5(3): 355.

[8]

He WW, Zhang EL, Yang K. Effect of Y on the bio-corrosion behavior of extruded Mg-Zn-Mn alloy in Hank’s solution. Mater. Sci. Eng. C, 2010, 30(1): 167.

[9]

Z.R. Xie, C. Zhang, H.C. Pan, Y.X. Wang, Y.P. Ren, and G.W. Qin, Microstructures and bio-corrosion resistances of as-extruded Mg-Ca alloys with ultra-fine grain size, Rare Met., 2017, DOI: https://doi.org/10.1007/s12598-017-0945-2.

[10]

Zhang L, Liu Z, Mao PL. Effect of annealing on the microstructure and mechanical properties of Mg-2.5Zn-0.5Y alloy. Int. J. Miner. Metall. Mater., 2014, 21(8): 779.

[11]

Aghion E, Levy G, Ovadia S. In vivo behavior of biodegradable Mg-Nd-Y-Zr-Ca alloy. J. Mater. Sci. -Mater. Med., 2012, 23(3): 805.

[12]

Xu YZ, Li JY, Qi MF, Gu JB, Zhang Y. Effect of extrusion on the microstructure and corrosion behaviors of biodegradable Mg-Zn-Y-Gd-Zr alloy. J. Mater. Sci., 2020, 55(3): 1231.

[13]

S.Q. Yin, W.C. Duan, W.H. Liu, L. Wu, J.M. Yu, Z.L. Zhao, M. Liu, P. Wang, J.Z. Cui, and Z.Q. Zhang, Influence of specific second phases on corrosion behaviors of Mg-Zn-Gd-Zr alloys, Corros. Sci., 166(2020), art. No. 108419.

[14]

C. Zhang, L. Wu, H. Liu, G.S. Huang, B. Jiang, A. Atrens, and F.S. Pan, Microstructure and corrosion behavior of Mg-Sc binary alloys in 3.5wt% NaCl solution, Corros. Sci., 174(2020), art. No. 108831.

[15]

Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity?. Biomaterials, 2006, 27(15): 2907.

[16]

Zhang DF, Xu XX, Qi FG, Guo XX, Zhu ZT. Research status of yttrium-containing Mg-Zn based magnesium alloys. Foundary, 2012, 61(3): 266

[17]

Li JX, Zhang Y, Li JY, Xie JX. Effect of trace HA on microstructure, mechanical properties and corrosion behavior of Mg—2Zn—0.5Sr alloy. J. Mater. Sci. Technol., 2018, 34(2): 299.

[18]

Zhang Y, Li JX, Li JY. Microstructure, mechanical properties, corrosion behavior and film formation mechanism of Mg—Zn—Mn—xNd in Kokubo’s solution. J. Alloys Compd., 2018, 730, 458.

[19]

Jiang HS. Microstructure and Mechanical Properties of High Strength Mg—Zn—(Y/Gd)—Zr—(Ca) Alloys Containing W Phase, 2017, Harbin, Harbin Institute of Technology [Dissertation]

AI Summary AI Mindmap
PDF

134

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/