Recent progress of efficient utilization of titanium-bearing blast furnace slag

Yongfeng Cai , Ningning Song , Yunfei Yang , Lingmin Sun , Peng Hu , Jinshu Wang

International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (1) : 22 -31.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (1) : 22 -31. DOI: 10.1007/s12613-021-2323-1
Invited Review

Recent progress of efficient utilization of titanium-bearing blast furnace slag

Author information +
History +
PDF

Abstract

Titanium-bearing blast furnace slag (BFS) has valuable compositions and potential environmental hazardousness. Thus, developing efficient and green approaches to utilize BFS is highly desired for resource economization and environmental protection. In the past decades, many attempts have been adopted to reuse BFS efficiently, and significant advances in understanding the fundamental features and the development of efficient approaches have been achieved. This review provides a comprehensive overview of the latest progress on the efficient utilization of BFS and discusses the mechanism and characteristics of various approaches, along with their application prospects. In particular, the extraction and enrichment of titanium-bearing phases from BFS are highlighted because of the high availability of titanium resources. This systemic and comprehensive review may benefit the design of new and green utilization routes with high efficiency and low cost.

Keywords

titanium-bearing blast furnace slag / utilization approach / enrichment process / extracting titanium / mechanism

Cite this article

Download citation ▾
Yongfeng Cai, Ningning Song, Yunfei Yang, Lingmin Sun, Peng Hu, Jinshu Wang. Recent progress of efficient utilization of titanium-bearing blast furnace slag. International Journal of Minerals, Metallurgy, and Materials, 2022, 29(1): 22-31 DOI:10.1007/s12613-021-2323-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Guo Y, Li HY, Yuan YH, Huang J, Diao J, Li G, Xie B. Microemulsion leaching of vanadium from sodium-roasted vanadium slag by fusion of leaching and extraction processes. Int. J. Miner. Metall. Mater., 2021, 28(6): 974.

[2]

Zhang XM. Study on Anti-Erosion Materials Prepared with Titanium-Bearing Blast Furnace Slag by Carbon-Thermal Reduction and Nitridation, 2016, Tangshan, North China University of Science and Technology, 16 [Dissertation]

[3]

Grass V, Istomin P, Nazarova L. X-ray diffraction refinement of the crystal structure of anosovite prepared from leucoxene. Cryst. Res. Technol., 2009, 44(1): 117.

[4]

Li XS, Xie B. Extraction of vanadium from high calcium vanadium slag using direct roasting and soda leaching. Int. J. Miner. Metall. Mater., 2012, 19(7): 595.

[5]

Thomas DK, Grecia RM. Historical Statistics for Mineral and Material Commodities in the United States, 2015, Commonwealth of Virginia, United States Geological Survey, 10

[6]

Zhang YM, Wang LN, Chen DS, Wang WJ, Liu YH, Zhao HX, Qi T. A method for recovery of iron, titanium, and vanadium from vanadium-bearing titanomagnetite. Int. J. Miner. Metall. Mater., 2018, 25(2): 131.

[7]

Zhang L, Zhang LN, Wang MY, Li GQ, Sui ZT. Recovery of titanium compounds from molten Ti-bearing blast furnace slag under the dynamic oxidation condition. Miner. Eng., 2007, 20(7): 684.

[8]

Guo JL, Bao YP, Wang M. Steel slag in China: Treatment, recycling, and management. Waste Manage., 2018, 78, 318.

[9]

Li HL, Li NL. Advance in comprehensive utilization of titanium slag resources. J. Guiyang Univ. Nat. Sci., 2017, 12(4): 56

[10]

Mo W. Titanium, 1998, Beijing, Metallurgical Industry Press, 153

[11]

Han BQ, Wang P, Ke CM, Yan W, Wei YW, Li N. Hydration behavior of spinel containing high alumina cement from high titania blast furnace slag. Cem. Concr. Res., 2016, 79, 257.

[12]

Zhang J. Computational Thermodynamics of Metallurgical Melts and Solutions, 2007, Beijing, Metallurgical Industry Press, 203

[13]

Shi JJ, Sun LF, Qiu JY, Jiang MF. Phase equilibria of CaO—SiO2—5wt.%MgO—30wt.%Al2O3—TiO2 system at 1400°C and 1450°C relevant to high Al2O3 Ti-bearing blast furnace slag system. J. Alloys Compd., 2017, 722, 25.

[14]

Shi JJ, Sun LF, Qiu JY, Zhang B, Jiang MF. Phase equilibria of CaO—SiO2—5wt% MgO—10wt%Al2O3—TiO2 system at 1300°C and 1400°C relevant to Ti-bearing furnace slag. J. Alloys Compd., 2017, 699, 193.

[15]

Yang D, Zhou HH, Wang J, Pang ZD, Pei GS, Yan ZM, Mao HX, Qiu GB, Lv X. Influence of TiO2 on viscosity, phase composition and structure of chromium-containing high-titanium blast furnace slag. J. Mater. Res. Technol., 2021, 12, 1615.

[16]

Ma HB, Jiao KX, Zhang JL. The influence of basicity and TiO2 on the crystallization behavior of high Ti-bearing slags. CrystEngComm, 2020, 22(2): 361.

[17]

Shen HT, Forssberg E. An overview of recovery of metals from slags. Waste Manage., 2003, 23(10): 933.

[18]

Jena BC, Dresler W, Reilly IG. Extraction of titanium, vanadium and iron from titanomagnetite deposits at pipestone lake, Manitoba, Canada. Miner. Eng., 1995, 8(1–2): 159.

[19]

Dong HG. A Fundamental Investigation on Recovery of Titanium from Titanium-bearing Blast Furnace Slag, 2006, Changsha, Central South University, 14 [Dissertation]

[20]

Deng CS. Phase composition of vanadium-containing fused titanium slag. Iron. Steel. Van. Tit., 1985, 2(1): 22

[21]

Yu W. Commercial-scale test on Ti slag smelting from Ti concentrate. Rare. Met. Cement. Carbide., 2004, 32(4): 29

[22]

Z.Y. Wang, J.L. Zhang, Z.J. Liu, G.W. Wang, K.X. Jiao, K.J. Li, and T.J. Yang, Production of ferrotitanium alloy from titania slag based on aluminothermic reduction, J. Alloys Compd., 810(2019), art. No. 151969.

[23]

Wang Y, Suraneni P. Experimental methods to determine the feasibility of steel slags as supplementary cementitious materials. Constr. Build. Mater., 2019, 204, 458.

[24]

Wang Z, Sun HY, Zhu QS. Effects of the continuous cooling process conditions on the crystallization and liberation characteristics of anosovite in Ti-bearing titanomagnetite smelting slag. Int. J. Miner. Metall. Mater., 2019, 26(9): 1120.

[25]

Ma J, Fu GQ, Li W, Zhu MY. Influence of TiO2 on the melting property and viscosity of Cr-containing high-Ti melting slag. Int. J. Miner. Metall. Mater., 2020, 27(3): 310.

[26]

Z.Y. Wang, J.L. Zhang, B.J. Zhao, and Z.J. Liu, Extraction of titanium resources from the titanium-containing waste slag: Thermodynamic analysis and experimental verification, Calphad, 71(2020), art. No. 102211.

[27]

He WC, XW, Ding CY, Yan ZM. Oxidation pathway and kinetics of titania slag powders during cooling process in air. Int. J. Miner. Metall. Mater., 2021, 28(6): 981.

[28]

Shi YH, Liu QH, Zhang YF, Wang H. Structure, Study on the physicochemical properties of panzhihua iron concentrate pellets deep reduction titanium slag. Iron Steel Vanadium Titanium, 1993, 14(1): 7

[29]

Montenegro-Cooper JM, Celemín-Matachana M, Cañizal J, González JJ. Study of the expansive behavior of ladle furnace slag and its mixture with low quality natural soils. Constr. Build. Mater., 2019, 203, 201.

[30]

Jiang HM. Research and Application of High Titanium Heavy Slag Aggregate of High Performance Concrete, 2011, Wuhan, Wuhan University of Technology, 52 [Dissertation]

[31]

Y. Shi, H.M. Yang, and H.Q. Yang, Experimental study on cement-based composites with high-titanium slag, [in] Proceedings of the 2009 International Symposium on Environmental Science and Technology, Florida, 2009, p. 2280.

[32]

X. Li, R.F. Qiu, F.B. Xue, L. Fang, and F.Q. Cheng, Effects of unreactive MgO and impurities in light burned MgO on the hydration process and performance of base magnesium sulfate cement, Constr. Build. Mater., 240(2020), art. No. 117854.

[33]

Ao JQ, Hao JZ, Wang HB, Cao ZW. Development of slag brick with high content of Ti-bearing slag. Iron Steel Vanadium Titanium, 2007, 28(2): 57

[34]

Tan KF, Zhou ZL. Study on the availability of activating the reactivity of titanium bearing slag and using it to produce new wall materials. J. Wuhan Univ. Technol., 2004, 26(7): 31

[35]

Li YQ, Ke CM, Hou SX, Han BQ, Li N. Research on reduction of Panzhihua iron and steel co BF slag by carbon thermal reaction. Bull. Chin. Ceram. Soc., 2007, 26(3): 447

[36]

Qin J, Wang Y, You ZX, Wen LY, Lv XW. Carbonization and nitridation of vanadium-bearing titanomagnetite during carbothermal reduction with coal. J. Mater. Res. Technol., 2020, 9(3): 4272.

[37]

Özbay E, Erdemir M, Durmus H. Utilization and efficiency of ground granulated blast furnace slag on concrete properties — A review. Constr. Build. Mater., 2016, 105, 423.

[38]

Liang YX, Che YC. Inorganic Thermodynamics Data Book, 1993, Shenyang, Northeastern University Press, 95

[39]

Du HG. Principle of V—Ti-Bearing Magnetic Ore Smelting in a Blast Furnace, 1996, Beijing, Science Press, 40

[40]

Liu P, Zhang LB, Liu BG, He GJ, Peng JH, Huang MY. Determination of dielectric properties of titanium carbide fabricated by microwave synthesis with Ti-bearing blast furnace slag. Int. J. Miner. Metall. Mater., 2021, 28(1): 88.

[41]

Liu XH. Study on High-Temperature Carbonization and Low-Temperature Chlorination on Modified Titanium Bearing Bearing Blast Furnace Slag, 2009, Shenyang, Northeastern University, 18 [Dissertation]

[42]

Wang YJ. Study on the Crystal and Surface Properties of Black Titanium in Molten Titanium Slag, 2017, Kunming, Kunming University of Science and Technology, 9 [Dissertation]

[43]

F. Safdar, Y. Zhang, S.L. Zheng, X. Chen, P. Sun, Y. Zhang, and P. Li, Recovery of TiO2-enriched material from vanadium titano-magnetite concentrates by partial carbon reduction and mild acid leaching, Hydrometallurgy, 193(2020), art. No. 105324.

[44]

Fu NX, Lou TP, Du XH, Sui ZT. Effect of additives on chlorination of modified titania-containing blast furnace slag. J. Northeast. Univ. Nat. Sci., 2012, 33(5): 698

[45]

Huang QY, Lv XW, Huang R, Song JJ. Preparation of Ti—Si—Al alloy by aluminothermic reduction of TiO2 bearing blast furnace slag. Can. Metall. Q., 2013, 52(4): 413.

[46]

Lei Y, Sun LE, Ma WH, Ma XD, Wu JJ, Li SY, Morita K. An approach to employ titanium-bearing blast-furnace slag to prepare Ti and Al—Si alloys. J. Alloys Compd., 2018, 769, 983.

[47]

Lei Y, Wang C, Ma WH, Wu JJ, Wei KX, Li SY, Lv G, Morita K. A novel approach to prepare high-purity Si and Si/TiSi2 materials simultaneously using Ti-bearing blast furnace slag. J. Alloys Compd., 2019, 798, 333.

[48]

Pu ZH, Jiao HD, Mi ZS, Wang MY, Jiao SQ. Selective extraction of titanium from Ti-bearing slag via the enhanced depolarization effect of liquid copper cathode. J. Energy Chem., 2020, 42, 43.

[49]

C. Wang, Y. Lei, W.H. Ma, and P. Qiu, An approach for simultaneous treatments of diamond wire saw silicon kerf and Ti-bearing blast furnace slag, J. Hazard. Mater., 401(2021), art. No. 123446.

[50]

Sun HJ, Zhou GB, Peng TJ, Wu X, He SQ, Zhou F. Recovery of titanium from titanium-rich product prepared from high Ti-bearing blast furnace slag by sulfuric acid leaching. Min. Metall., 2015, 24(3): 54

[51]

L. Wang, L. Chen, W.Z. Liu, G.Q. Zhang, S.W. Tang, H.R. Yue, B. Liang, and D.M. Luo, Recover titanium, aluminum, magnesium and separate silicon from titanium-bearing blast furnace slag by sulfuric acid curing-leaching, Int. J. Miner. Metall. Mater., (2021). Doi: https://doi.org/10.1007/s12613-021-2293-3

[52]

Liu XH, Gai GS, Yang YF, Sui ZT, Li L, Fu JX. Kinetics of the leaching of TiO2 from Ti-bearing blast furnace slag. J. China Univ. Min. Technol., 2008, 18(2): 275.

[53]

Yang J, Lei S, Yu J, Xu GW. Low-cost V—W—Ti SCR catalyst from titanium-bearing blast furnace slag. J. Environ. Chem. Eng., 2014, 2(2): 1007.

[54]

B. Peng, W.Z. Yi, J. Peng, and D. Yu, A way of comprehensive utilization of blast furnace slag in panzhihua iron and steel company, Multipurpose Util. Miner. Resour., 1997, No. 5, p. 26.

[55]

Xiong Y, Liang B, Li C. Extraction and separation of titanium from air-cooled Ti-bearing blast furnace slag. Chin. J. Process. Eng., 2008, 8(6): 1092

[56]

M.H. Wang, X.H. Du, and Z.T. Sui, Extracting titanium from titanium-rich blast furnace slag by sulfuric acid method, Multipurpose Util. Miner. Resour., 2000, No. 4, p. 5.

[57]

Xiong Y, Li C, Liang B, Xie J. Leaching behavior of air cooled Ti-bearing blast-furnace slag in hydrochloric acid. Chin. J. Nonferrous. Met., 2008, 18(3): 557

[58]

Dong HG, Jiang T, Guo YF, Chen JL, Fan XX. Upgrading a Ti-slag by a roast-leach process. Hydrometallurgy, 2012, 113–114, 119.

[59]

Wang YB, Qi T, Chu JL, Zhao W. Production of TiO2 from CaTiO3 by alkaline roasting method. Rare Met., 2010, 29(2): 162.

[60]

Eriksson G, Pelton AD. Critical evaluation and optimization of the thermodynamic properties and phase diagrams of the MnO—TiO2, MgO—TiO2, FeO—TiO2, Ti2O3—TiO2, Na2O—TiO2, and K2O—TiO2 systems. Metall. Trans. B, 1993, 24(5): 795.

[61]

Sun K, Wu JH, Ma YY, Hu ZW, Wu HB, Chen HQ, Yu XH, Qin WD, Li ZY. Fundamental study of new treatment process for titaniferous blast furnace slag at pangang using phase separation. Iron Steel Vanadium Titanium, 2000, 21(3): 54

[62]

Zhang YJ, Qi T, Zhang Y. A novel preparation of titanium dioxide from titanium slag. Hydrometallurgy, 2009, 96(1–2): 52.

[63]

Wang XD, Mao YW, Liu XY, Zhu YK. Study on crystallization behavior of blast furnace slag containing TiO2. J. Iron Steel Res., 1990, 2(3): 1.

[64]

X.B. Wan, J.J. Shi, L. Klemettinen, M. Chen, P. Taskinen, and A. Jokilaakso, Equilibrium phase relations of CaO—SiO2—TiO2 system at 1400 °C and oxygen partial pressure of 10−10 atm, J. Alloys Compd., 847(2020), art. No. 156472.

[65]

Wang XD, Mao YW, Xie DS, Zhu YK. The crystallization law of titanium-bearing blast furnace slag in the reduced state. J. East Chin. Inst. Metall., 1993, 10(4): 16

[66]

Liu L, Hu ML, Xu YZ, Bai CG, Gan YH. Structure, growth process, and growth mechanism of perovskite in high-titanium-bearing blast furnace slag. Metall. Mater. Trans. B, 2015, 46(4): 1751.

[67]

Hu ML, Liu L, Lv XW, Bai CG, Zhang SF. Crystallization behavior of perovskite in the synthesized high-titanium-bearing blast furnace slag using confocal scanning laser microscope. Metall. Mater. Trans. B, 2014, 45(1): 76.

[68]

N.X. Fu, Y.W. Zhang, and Z.T. Sui, The effects of cooling rate on the precipitation of the perovskite phase in blast furnace Tislags, Multipurpose Util. Miner. Resour., 1997, No. 4, p. 16.

[69]

Wu MZ, HH, Liu MC, Zhang ZL, Wu XR, Liu WM, Wang P, Li LS. Direct extraction of perovskite CaTiO3 via efficient dissociation of silicates from synthetic Ti-bearing blast furnace slag. Hydrometallurgy, 2017, 167, 8.

[70]

Li YH, Lou TP, Sui ZT. Effect of CaO and MnO on the crystallization of the perovskite phase in the Ti-Bearing blast furnace slag. J. Iron Steel Res., 2000, 12(3): 1

[71]

Fu NX, Zhang L, Cao HY, Sui ZT. Effects of additives on precipitation behavior of perovskite in Ti-bearing blast furnace slag. J. Iron Steel Res., 2008, 20(4): 13

[72]

Du Y, Gao JT, Lan X, Guo ZC. Recovery of rutile from Ti-Bearing blast furnace slag through phase transformation and super-gravity separation for dielectric material. Ceram. Int., 2020, 46(7): 9885.

[73]

Gao JT, Zhong YW, Guo ZC. Selective precipitation and concentrating of perovskite crystals from titanium-bearing slag melt in supergravity field. Metall. Mater. Trans. B, 2016, 47(4): 2459.

[74]

Grey IE, Cranswick LMD, Li C, White TJ, Bursill LA. New M3O5—anatase intergrowth structures formed during low-temperature oxidation of anosovite. J. Solid State Chem., 2000, 150(1): 128.

[75]

Z. Wang, Q.S. Zhu, H. Wang, and H.Y. Sun, Influence of the redox conditions on the crystallization behavior of anosovite in Ti-bearing titanomagnetite smelting slag, Results Chem., 3(2021), art. No. 100136.

[76]

Ren S, Zhang JL, Wu LS, Liu WJ, Bai YN, Xing XD, Su BX, Kong DW. Influence of B2O3 on viscosity of high Ti-bearing blast furnace slag. ISIJ Int., 2012, 52(6): 984.

[77]

Li ZM, Sun YQ, Liu LL, Wang XD, Zhang ZT. Enhancement of rutile formation by ZrO2 addition in Ti-bearing blast furnace slags. ISIJ Int., 2015, 55(7): 1384.

AI Summary AI Mindmap
PDF

151

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/