Recent progress of efficient utilization of titanium-bearing blast furnace slag
Yongfeng Cai , Ningning Song , Yunfei Yang , Lingmin Sun , Peng Hu , Jinshu Wang
International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (1) : 22 -31.
Recent progress of efficient utilization of titanium-bearing blast furnace slag
Titanium-bearing blast furnace slag (BFS) has valuable compositions and potential environmental hazardousness. Thus, developing efficient and green approaches to utilize BFS is highly desired for resource economization and environmental protection. In the past decades, many attempts have been adopted to reuse BFS efficiently, and significant advances in understanding the fundamental features and the development of efficient approaches have been achieved. This review provides a comprehensive overview of the latest progress on the efficient utilization of BFS and discusses the mechanism and characteristics of various approaches, along with their application prospects. In particular, the extraction and enrichment of titanium-bearing phases from BFS are highlighted because of the high availability of titanium resources. This systemic and comprehensive review may benefit the design of new and green utilization routes with high efficiency and low cost.
titanium-bearing blast furnace slag / utilization approach / enrichment process / extracting titanium / mechanism
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
Z.Y. Wang, J.L. Zhang, Z.J. Liu, G.W. Wang, K.X. Jiao, K.J. Li, and T.J. Yang, Production of ferrotitanium alloy from titania slag based on aluminothermic reduction, J. Alloys Compd., 810(2019), art. No. 151969. |
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
Z.Y. Wang, J.L. Zhang, B.J. Zhao, and Z.J. Liu, Extraction of titanium resources from the titanium-containing waste slag: Thermodynamic analysis and experimental verification, Calphad, 71(2020), art. No. 102211. |
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
Y. Shi, H.M. Yang, and H.Q. Yang, Experimental study on cement-based composites with high-titanium slag, [in] Proceedings of the 2009 International Symposium on Environmental Science and Technology, Florida, 2009, p. 2280. |
| [32] |
X. Li, R.F. Qiu, F.B. Xue, L. Fang, and F.Q. Cheng, Effects of unreactive MgO and impurities in light burned MgO on the hydration process and performance of base magnesium sulfate cement, Constr. Build. Mater., 240(2020), art. No. 117854. |
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
F. Safdar, Y. Zhang, S.L. Zheng, X. Chen, P. Sun, Y. Zhang, and P. Li, Recovery of TiO2-enriched material from vanadium titano-magnetite concentrates by partial carbon reduction and mild acid leaching, Hydrometallurgy, 193(2020), art. No. 105324. |
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
C. Wang, Y. Lei, W.H. Ma, and P. Qiu, An approach for simultaneous treatments of diamond wire saw silicon kerf and Ti-bearing blast furnace slag, J. Hazard. Mater., 401(2021), art. No. 123446. |
| [50] |
|
| [51] |
L. Wang, L. Chen, W.Z. Liu, G.Q. Zhang, S.W. Tang, H.R. Yue, B. Liang, and D.M. Luo, Recover titanium, aluminum, magnesium and separate silicon from titanium-bearing blast furnace slag by sulfuric acid curing-leaching, Int. J. Miner. Metall. Mater., (2021). Doi: https://doi.org/10.1007/s12613-021-2293-3 |
| [52] |
|
| [53] |
|
| [54] |
B. Peng, W.Z. Yi, J. Peng, and D. Yu, A way of comprehensive utilization of blast furnace slag in panzhihua iron and steel company, Multipurpose Util. Miner. Resour., 1997, No. 5, p. 26. |
| [55] |
|
| [56] |
M.H. Wang, X.H. Du, and Z.T. Sui, Extracting titanium from titanium-rich blast furnace slag by sulfuric acid method, Multipurpose Util. Miner. Resour., 2000, No. 4, p. 5. |
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
X.B. Wan, J.J. Shi, L. Klemettinen, M. Chen, P. Taskinen, and A. Jokilaakso, Equilibrium phase relations of CaO—SiO2—TiO2 system at 1400 °C and oxygen partial pressure of 10−10 atm, J. Alloys Compd., 847(2020), art. No. 156472. |
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
N.X. Fu, Y.W. Zhang, and Z.T. Sui, The effects of cooling rate on the precipitation of the perovskite phase in blast furnace Tislags, Multipurpose Util. Miner. Resour., 1997, No. 4, p. 16. |
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
Z. Wang, Q.S. Zhu, H. Wang, and H.Y. Sun, Influence of the redox conditions on the crystallization behavior of anosovite in Ti-bearing titanomagnetite smelting slag, Results Chem., 3(2021), art. No. 100136. |
| [76] |
|
| [77] |
|
/
| 〈 |
|
〉 |