Oxidation resistance of powder metallurgy Ti—45Al—10Nb alloy at high temperature

Xuchen Jin , Peihao Ye , Hongrui Ji , Zhuanxia Suo , Boxin Wei , Xuewen Li , Wenbin Fang

International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (12) : 2232 -2240.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (12) : 2232 -2240. DOI: 10.1007/s12613-021-2320-4
Article

Oxidation resistance of powder metallurgy Ti—45Al—10Nb alloy at high temperature

Author information +
History +
PDF

Abstract

TiAl alloy with high Nb content, nominally Ti—45Al—10Nb, was prepared by powder metallurgy, and the oxidation resistance at 850, 900, and 950°C was investigated. The high-temperature oxidation-resistance mechanism and oxidation dynamics were discussed following the oxide skin morphology and microstructural evolution analysis. The oxide skin structures were similar for 850 and 900°C, with TiO2+Al2O3 mixture covering TiO2 with dispersed Nb2O5. At 950°C, the oxide skin was divided into four sublayers, from the outside to the parent metal: loose TiO2+Al2O3, dense Al2O3, dense TiO2+Nb2O5, and TiO2 matrix with dispersed Nb2O5. The Nb layer suppressed the outward diffusion of Ti atoms, hindering the growth of TiO2, and simultaneously promote the formation of a continuous Al2O3 protective layer, providing the alloy with long-term high-temperature oxidation resistance.

Keywords

Ti—45Al—10Nb / elemental powder metallurgy / microstructure / high-temperature oxidation resistance

Cite this article

Download citation ▾
Xuchen Jin, Peihao Ye, Hongrui Ji, Zhuanxia Suo, Boxin Wei, Xuewen Li, Wenbin Fang. Oxidation resistance of powder metallurgy Ti—45Al—10Nb alloy at high temperature. International Journal of Minerals, Metallurgy, and Materials, 2022, 29(12): 2232-2240 DOI:10.1007/s12613-021-2320-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Naka S, Thomas M, Khan T. Liu CT, Cahn RW, Sauthoff G. Potential and prospects of some intermetallic compounds for structural applications. Ordered Intermetallics—Physical Metallurgy and Mechanical Behaviour, NATO ASI Series, 1992, Dordrecht, Springer vol 213

[2]

Uenishi K, Kobayashi KF. Processing of intermetallic compounds for structural applications at high temperature. Intermetallics, 1996, 4(Suppl. 1): S95.

[3]

Lin JP, Xu XJ, Wang YL, He SF, Zhang Y, Song XP, Chen GL. High temperature deformation behaviors of a high Nb containing TiAl alloy. Intermetallics, 2007, 15(5–6): 668.

[4]

Chen G, Peng YB, Zheng G, Qi ZX, Wang MZ, Yu HC, Dong CL, Liu CT. Polysynthetic twinned TiAl single crystals for high-temperature applications. Nat. Mater., 2016, 15(8): 876.

[5]

Kim YW, Kim SL. Advances in gammalloy materials-processes-application technology: Successes, dilemmas, and future. JOM, 2018, 70(4): 553.

[6]

H. Wu and G.H. Fan, An overview of tailoring strain delocalization for strength-ductility synergy, Prog. Mater. Sci., 113(2020), art. No. 100675.

[7]

Wu H, Fan GH, Huang M, Geng L, Cui XP, Xie HL. Deformation behavior of brittle/ductile multilayered composites under interface constraint effect. Int. J. Plast., 2017, 89, 96.

[8]

Yu W, Zhou JX, Yin YJ, Tu ZX, Feng X, Nan H, Lin JP, Ding XF. Effects of heat treatments on microstructures of TiAl alloys. Int. J. Miner. Metall. Mater., 2022, 29(6): 1225.

[9]

Appel F, Clemens H, Fischer FD. Modeling concepts for intermetallic titanium aluminides. Prog. Mater. Sci., 2016, 81, 55.

[10]

Clemens H, Mayer S. Intermetallic titanium aluminides in aerospace applications — processing, microstructure and properties. Mater. High Temp., 2016, 33(4–5): 560.

[11]

Bewlay BP, Nag S, Suzuki A, Weimer MJ. TiAl alloys in commercial aircraft engines. Mater. High Temp., 2016, 33(4–5): 549.

[12]

Xiang LL, Zhao LL, Wang YL, Zhang LQ, Lin JP. Synergistic effect of Y and Nb on the high temperature oxidation resistance of high Nb containing TiAl alloys. Intermetallics, 2012, 27, 6.

[13]

H. Wu, M. Huang, X.W. Li, Y.P. Xia, Z. Wang, and G.H. Fan, Temperature-dependent reversed fracture behavior of multilayered TiBw/Ti-Ti(Al) composites, Int. J. Plast., 141(2021), art. No. 102998.

[14]

Dai JJ, Zhu JY, Chen CZ, Weng F. High temperature oxidation behavior and research status of modifications on improving high temperature oxidation resistance of titanium alloys and titanium aluminides: A review. J. Alloys Compd., 2016, 685, 784.

[15]

J.J. Dai, H.J. Yu, J.Y. Zhu, F. Weng, and C.Z. Chen, Mechanical properties and high temperature oxidation behavior of Ti-Al coating reinforced by nitrides on Ti-6Al-4V alloy, Surf. Rev. Lett., 23(2016), No. 5, art. No. 1650031.

[16]

Fu YD, Niu XQ, Zhang LJ, Yan F, Zheng J, Meng XL. Phase composition of hot-dipped Ti-Al cladding on Ti6Al4V alloy. Heat Treat. Met., 2015, 40(3): 62

[17]

Peng XM, Xia CQ, Wang ZH, Huang Z, Wang JH. Development of high temperature oxidation and protection of TiAl-based alloy. Chin. J. Nonferrous Met., 2010, 20(6): 1116

[18]

Przybilla W, Schütze M. Growth stresses in the oxide scales on TiAl alloys at 800 and 900°C. Oxid. Met., 2002, 58(3/4): 337.

[19]

Leyens C, Braun R, Fröhlich M, Hovsepian PE. Recent progress in the coating protection of gamma titanium-aluminides. JOM, 2006, 58(1): 17.

[20]

Rahmel A, Schütze M, Quadakkers WJ. Fundamentals of TiAl oxidation—A critical review. Werkst. Korros., 1995, 46(5): 271.

[21]

J.J. Dai, J.Y. Zhu, L. Zhuang, and S.Y. Li, Effect of surface aluminizing on long-term high-temperature thermal stability of TC4 titanium alloy, Surf. Rev. Lett., 23(2016), No. 2, art. No. 1550102.

[22]

Yoshihara M, Miura K. Effects of Nb addition on oxidation behavior of TiAl. Intermetallics, 1995, 3(5): 357.

[23]

Cheng XY, Wan XJ, Shen JN. The effect of Nb on the oxida-tion behavior of TiAl alloy at high temperature. J. Chin. Soc. Corros. Prot., 2002, 22(2): 69

[24]

Ouyang SH, Liu B, Li JB, Xu LY, Liu Y. Effect of Nb on high temperature oxidation behavior of powder metallurgy TiAl based alloy. Mater. Sci. Eng. Powder Metall., 2015, 20(4): 616

[25]

Taniguchi S, Tachikawa Y, Shibata T. Influence of oxygen partial pressure on the oxidation behaviour of TiAl at 1300 K. Mater. Sci. Eng. A, 1997, 232(1–2): 47.

[26]

Kovács K, Perczel IV, Josepovits VK, Kiss G, Réti F, Deák P. In situ surface analytical investigation of the thermal oxidation of Ti-Al intermetallics up to 1000°C. Appl. Surf. Sci., 2002, 200(1–4): 185.

[27]

Taylor TN, Paffett MT. Oxide properties of a γ-TiAl: A surface science study. Mater. Sci. Eng. A, 1992, 153(1–2): 584.

[28]

Das S. The Al—O—Ti (Aluminum-oxygen-titanium) system. J. Phase Equilibria, 2002, 23(6): 525.

[29]

Du HL, Datta PK, Klusek Z, Burnell-Gray JS. Nanoscale studies of the early stages of oxidation of a TiAl-base alloy. Oxid. Met., 2004, 62(3–4): 175.

[30]

Shen J, Zhou L, Li T. Effects of surface-applied ceria on the stability of thermally growing chromia scale of FeCr alloys and 310steel. J. Mater. Sci., 1998, 33(24): 5815.

[31]

Vojtěch D, Čížkovský J, Novák P, Šerák J, Fabián T. Effect of niobium on the structure and high-temperature oxidation of TiAl—Ti5Si3 eutectic alloy. Intermetallics, 2008, 16(7): 896.

[32]

Varma SK, Chan A, Mahapatra BN. Static and cyclic oxidation of Ti-44Al and Ti-44Al-xNb alloys. Oxid. Met., 2001, 55(5/6): 423.

[33]

Yoshihara M, Kim YW. Oxidation behavior of gamma alloys designed for high temperature applications. Intermetallics, 2005, 13(9): 952.

[34]

Eckert M, Kath D, Hilpert K. Thermodynamic activities in the alloys of the Ti-Al-Nb system. Metall. Mater. Trans. A, 1999, 30(5): 1315.

AI Summary AI Mindmap
PDF

149

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/