Evolution behavior of γ″ phase of IN718 superalloy in temperature/stress coupled field

Han-zhong Deng , Lei Wang , Yang Liu , Xiu Song , Fan-qiang Meng , Shuo Huang

International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (12) : 1949 -1956.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (12) : 1949 -1956. DOI: 10.1007/s12613-021-2317-z
Article

Evolution behavior of γ″ phase of IN718 superalloy in temperature/stress coupled field

Author information +
History +
PDF

Abstract

The evolution behavior of the γ″ phase of IN718 superalloy in a temperature/stress coupled field was investigated. Results showed that the coarsening rate of the γ″ phase was significantly accelerated in the temperature/stress coupled field. Based on the detail microstructural and crystal defect analysis, it was found that the coarsening rate of the γ″ phase with applied stress was significantly higher than that without stress. The main reasons for the increase in the coarsening rate of the γ″ phase are as follows: the vacancy formation energy is decreased by the applied stress, which leads to an increase in the vacancy concentration; in the temperature/stress coupled field, the Nb atoms easily combine with vacancies to form complexes and diffuse with the complexes, resulting in a significant increase in the Nb atom diffusion coefficient; Nb atom diffusion is the key control factor for the coarsening of the γ″ phase.

Keywords

evolution behavior / temperature/stress coupled field / IN718 superalloy / γ″ phase

Cite this article

Download citation ▾
Han-zhong Deng, Lei Wang, Yang Liu, Xiu Song, Fan-qiang Meng, Shuo Huang. Evolution behavior of γ″ phase of IN718 superalloy in temperature/stress coupled field. International Journal of Minerals, Metallurgy, and Materials, 2021, 28(12): 1949-1956 DOI:10.1007/s12613-021-2317-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Y.C. Wang, L.M. Lei, L. Shi, H.Y. Wan, F. Liang, and G.P. Zhang, Scanning strategy dependent tensile properties of selective laser melted GH4169, Mater. Sci. Eng. A, 788(2020), art. No. 139616.

[2]

P.H. Geng, G.L. Qin, J. Zhou, T.Y. Li, and N.S. Ma, Characterization of microstructures and hot-compressive behavior of GH4169 superalloy by kinetics analysis and simulation, J. Mater. Process. Technol., 288(2021), art. No. 116879.

[3]

Zhang JY, Xu B, Tariq NUH, Sun MY, Li DZ, Li YY. Effect of strain rate on plastic deformation bonding behavior of Ni-based superalloys. J. Mater. Sci. Technol., 2020, 40, 54.

[4]

Devaux A, Nazé L, Molins R, Pineau A, Organista A, Guédou JY, Uginet JF, Héritier P. Gamma double prime precipitation kinetic in Alloy 718. Mater. Sci. Eng. A, 2008, 486(1–2): 117.

[5]

Qiao Z, Li C, Zhang HJ, Liang HY, Liu YC, Zhang Y. Evaluation on elevated-temperature stability of modified 718-type alloys with varied phase configurations. Int. J. Miner. Metall. Mater., 2020, 27(8): 1123.

[6]

Zhang JL, Guo QY, Liu YC, Li C, Yu LM, Li HJ. Effect of cold rolling and first precipitates on the coarsening behavior of γ″-phases in Inconel 718 alloy. Int. J. Miner. Metall. Mater., 2016, 23(9): 1087.

[7]

Han YF, Deb P, Chaturvedi MC. Coarsening behaviour of γ″- and γ′-particles in Inconel alloy 718. Met. Sci., 1982, 16(12): 555.

[8]

Chaturvedi MC, Han Y. Effect of particle size on the creep rate of superalloy Inconel 718. Mater. Sci. Eng., 1987, 89, L7.

[9]

Han YF, Chaturvedi MC. A study of back stress during creep deformation of a superalloy inconel 718. Mater. Sci. Eng., 1987, 85, 59.

[10]

Wang L, Wang Y, Liu Y, Song X, XD, Zhang BJ. Coarsening behavior of γ′ and γ″ phases in GH4169 superalloy by electric field treatment. Int. J. Miner. Metall. Mater., 2013, 20(9): 861.

[11]

Li HY, Kong YH, Chen GS, Xie LX, Zhu SG, Sheng X. Effect of different processing technologies and heat treatments on the microstructure and creep behavior of GH4169 superalloy. Mater. Sci. Eng., 2013, 582, 368.

[12]

Kuo CM, Yang YT, Bor HY, Wei CN, Tai CC. Aging effects on the microstructure and creep behavior of Inconel 718 superalloy. Mater. Sci. Eng. A, 2009, 510–511, 289.

[13]

Chen W, Chaturvedi MC. Grain boundary dependent creep behaviour of Inconel 718. Can. Metall. Q., 1993, 32(4): 363.

[14]

Yeh AC, Lu KW, Kuo CM, Bor HY, Wei CN. Effect of serrated grain boundaries on the creep property of Inconel 718 superalloy. Mater. Sci. Eng., 2011, 530, 525.

[15]

X.T. Hu, W.M. Ye, L.C. Zhang, R. Jiang, and Y.D. Song, Investigation on creep properties and microstructure evolution of GH4169 alloy at different temperatures and stresses, Mater. Sci. Eng. A, 800(2021), art. No. 140338.

[16]

Gao M, Harlow DG, Wei RP, Chen SC. Preferential coarsening of γ″ precipitates in INCONEL 718 during creep. Metall. Mater. Trans. A, 1996, 27(11): 3391.

[17]

H.B. Long, S.R. Bakhtiari, Y.N. Liu, S.C. Mao, H. Wei, Y.H. Chen, A. Li, D.L. Kong, L. Yan, L.Y. Yang, Z. Zhang, and X.D. Han, A comparative study of rafting mechanisms of Ni-based single crystal superalloys, Mater. Des., 196(2020), art. No. 109097.

[18]

Qi DQ, Wang L, Zhao P, Qi L, He SY, Qi Y, Ye HQ, Zhang J, Du K. Facilitating effect of interfacial grooves on the rafting of nickel-based single crystal superalloy at high temperature. Scr. Mater., 2019, 167, 71.

[19]

Yu YC, Ru Y, Shang Y, Pei YL, Li SS, Gong SK. Effect of applied stress on γ′-rafting behavior in a Ni-based single-crystal superalloy: Experiments and finite element analysis. J. Iron Steel Res. Int., 2019, 26(3): 259.

[20]

M.A. Ali, J.V. Görler, and I. Steinbach, Role of coherency loss on rafting behavior of Ni-based superalloys, Comput. Mater. Sci., 171(2020), art. No. 109279.

[21]

An JL, Wang L, Song X, Liu Y. New approach for plastic deformation behavior of GH4169 superalloy with in situ electric-pulse current at 800°C. Mater. Sci. Eng. A, 2017, 707, 356.

[22]

Lin YC, Yang H, Xin YC, Li CZ. Effects of initial microstructures on serrated flow features and fracture mechanisms of a nickel-based superalloy. Mater. Charact., 2018, 144, 9.

[23]

Y.C. Lin, H. Yang, D.G. He, and J. Chen, A physically-based model considering dislocation-solute atom dynamic interactions for a nickel-based superalloy at intermediate temperatures, Mater. Des., 183(2019), art. No. 108122.

[24]

Lin YC, Yang H, Li L. Effects of solutionizing cooling processing on γ″ (Ni3Nb) phase and work hardening characteristics of a Ni-Fe-Cr-base superalloy. Vacuum, 2017, 144, 86.

[25]

Chen K, Rui SY, Wang F, Dong JX, Yao ZH. Microstructure and homogenization process of as-cast GH4169D alloy for novel turbine disk. Int. J. Miner. Metall. Mater., 2019, 26(7): 889.

[26]

A. Janotti, M. Krcmar, C.L. Fu, and R.C. Reed, Solute diffusion in metals: Larger atoms can move faster, Phys. Rev. Lett., 92(2004), No. 8, art. No. 085901.

[27]

C.L. Fu, R. Reed, A. Janotti, and M. Krcmar, On the diffusion of alloying elements in the nickel-base superalloys, [in] Proceedings of the International Symposium on Superalloys, Champion, PA, 2004, p. 867.

[28]

Lomaev IL, Novikov DL, Okatov SV, Gornostyrev YN, Burlatsky SF. First-principles study of 4d solute diffusion in nickel. J. Mater. Sci., 2014, 49(11): 4038.

[29]

Okazawa H, Yoshiie T, Ishizai T, Sato K, Xu Q, Satoh Y, Ohkubo Y, Kawase Y. Detection of interstitial clusters in neutron irradiated Ni-Hf alloy by perturbed angular correlation and positron annihilation lifetime measurements. J. Nucl. Mater., 2004, 329–333, 967.

[30]

Ohkubo H, Tang Z, Nagai Y, Hasegawa M, Tawara T, Kiritani M. Positron annihilation study of vacancy-type defects in high-speed deformed Ni, Cu and Fe. Mater. Sci. Eng. A, 2003, 350(1–2): 95.

[31]

Kuramoto E, Tsutsumi T, Ueno K, Ohmura M, Kamimura Y. Positron lifetime calculations on vacancy clusters and dislocations in Ni and Fe. Comput. Mater. Sci., 1999, 14(1–4): 28.

[32]

Kuramoto E, Abe H, Takenaka M, Hori F, Kamimura Y, Kimura M, Ueno K. Positron annihilation lifetime study of irradiated and deformed Fe and Ni. J. Nucl. Mater., 1996, 239, 54.

[33]

Brandt W, Paulin R. Positron diffusion in solids. Phys. Rev. B, 1972, 5(7): 2430.

[34]

Frank W, Seeger A. Theoretical foundation and extension of the trapping model. Appl. Phys., 1974, 3(1): 61.

[35]

Ghosh S, Suryanarayana P. Electronic structure study regarding the influence of macroscopic deformations on the vacancy formation energy in aluminum. Mech. Res. Commun, 2019, 99, 58.

[36]

Gao YH, Cao LF, Kuang J, Zhang JY, Liu G, Sun J. Dual effect of Cu on the Al3Sc nanoprecipitate coarsening. J. Mater. Sci. Technol., 2020, 37, 38.

[37]

A. Biswas, D.J. Siegel, and D.N. Seidman, Simultaneous segregation at coherent and semicoherent heterophase interfaces, Phys. Rev. Lett., 105(2010), No. 7, art. No. 076102.

[38]

Xu TD, Cheng BY. Kinetics of non-equilibrium grain-boundary segregation. Prog. Mater. Sci, 2004, 49(2): 109.

[39]

Faulkner RG. Non-equilibrium grain-boundary segregation in austenitic alloys. J. Mater. Sci., 1981, 16(2): 373.

[40]

Song SH, Weng LQ. Diffusion of vacancy-solute complexes in alloys. Mater. Sci. Technol., 2005, 21(3): 305.

AI Summary AI Mindmap
PDF

132

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/