Effects of the incorporation amounts of CdS and Cd(SCN2H4)2Cl2 on the performance of perovskite solar cells

Jihong Zheng , Liangxin Zhu , Zhitao Shen , Fumin Li , Lanyu Ling , Huilin Li , Chong Chen

International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (2) : 283 -291.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (2) : 283 -291. DOI: 10.1007/s12613-021-2316-0
Article

Effects of the incorporation amounts of CdS and Cd(SCN2H4)2Cl2 on the performance of perovskite solar cells

Author information +
History +
PDF

Abstract

An excellent organolead halide perovskite film is important for the good performance of perovskite solar cells (PSCs). However, defects in perovskite crystals can affect the photovoltaic properties and stability of solar cells. To solve this problem, this study incorporated a complex of CdS and Cd(SCN2H4)2Cl2 into the CH3NH3PbI3 active layer. The effects of different doping concentrations of CdS and Cd(SCN2H4)2Cl2 on the performance and stability of PSCs were analyzed. Results showed that doping appropriate incorporation concentrations of CdS and Cd(SCN2H4)2Cl2 in CH3NH3PbI3 can improve the performance of the prepared solar cells. In specific, CdS and Cd(SCN2H4)2Cl2 can effectively passivate the defects in perovskite crystals, thereby suppressing the charge recombination in PSCs and promoting the charge extraction at the TiO2/perovskite interface. Due to the reduction of perovskite crystal defects and the enhancement of compactness of the CdS:Cd(SCN2H4)2Cl2:CH3NH3PbI3 composite film, the stability of PSCs is significantly improved.

Keywords

perovskite solar cells / charge extraction / defect passivation / incorporation concentration

Cite this article

Download citation ▾
Jihong Zheng, Liangxin Zhu, Zhitao Shen, Fumin Li, Lanyu Ling, Huilin Li, Chong Chen. Effects of the incorporation amounts of CdS and Cd(SCN2H4)2Cl2 on the performance of perovskite solar cells. International Journal of Minerals, Metallurgy, and Materials, 2022, 29(2): 283-291 DOI:10.1007/s12613-021-2316-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yin WJ, Yang JH, Kang J, Yan YF, Wei SH. Halide perovskite materials for solar cells: A theoretical review. J. Mater. Chem. A, 2015, 3(17): 8926.

[2]

C.B. Fei, B. Li, R. Zhang, H.Y. Fu, J.J. Tian, and G.Z. Cao, Highly efficient and stable perovskite solar cells based on monolithically grained CH3NH3PbI3 film, Adv. Energy Mater., 7(2017), No. 9, art. No. 1602017.

[3]

X.X. Gao, W. Luo, Y. Zhang, R.Y. Hu, B. Zhang, A. Züttel, Y.Q. Feng, and M.K. Nazeeruddin, Stable and high-efficiency methylammonium-free perovskite solar cells, Adv. Mater., 32(2020), No. 9, art. No. 1905502.

[4]

H.B. Lee, N. Kumar, M.M. Ovhal, Y.J. Kim, Y.M. Song, and J.W. Kang, Dopant-free, amorphous-crystalline heterophase SnO2 electron transport bilayer enables >20% efficiency in triple-cation perovskite solar cells, Adv. Funct. Mater., 30(2020), No. 24, art. No. 2001559.

[5]

Q. Lou, H.L. Li, Q.S. Huang, Z.T. Shen, F.M. Li, Q. Du, M.Q. Jin, and C. Chen, Multifunctional CNT:TiO2 additives in spiro-OMeTAD layer for highly efficient and stable perovskite solar cells, EcoMat, 3(2021), No. 3, art. No. e12099.

[6]

Ma CQ, Park NG. A realistic methodology for 30% efficient perovskite solar cells. Chem, 2020, 6(6): 1254.

[7]

Min H, Lee DY, Kim J, Kim G, Lee KS, Kim J, Paik MJ, Kim YK, Kim KS, Kim MG, Shin TJ, Il Seok S. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature, 2021, 598(7881): 444.

[8]

Ren GH, Han WB, Deng YY, Wu W, Li ZW, Guo JX, Bao HC, Liu CY, Guo WB. Strategies of modifying spiro-OMeTAD materials for perovskite solar cells: A review. J. Mater. Chem. A, 2021, 9(8): 4589.

[9]

Kojima A, Teshima K, Shirai Y, Miyasaka T. Organo-metal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc., 2009, 131(17): 6050.

[10]

Stranks SD, Eperon GE, Grancini G, Menelaou C, Alcocer MJP, Leijtens T, Herz LM, Petrozza A, Snaith HJ. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 2013, 342(6156): 341.

[11]

Yang JL, Fransishyn KM, Kelly TL. Comparing the effect of mesoporous and planar metal oxides on the stability of methylammonium lead iodide thin films. Chem. Mater., 2016, 28(20): 7344.

[12]

Zhao Y, Ye QF, Chu ZM, Gao F, Zhang XW, You JB. Recent progress in high-efficiency planar-structure perovskite solar cells. Energy Environ. Mater., 2019, 2(2): 93.

[13]

Zhang HY, Li R, Liu WW, Zhang M, Guo M. Research progress in lead-less or lead-free three-dimensional perovskite absorber materials for solar cells. Int. J. Miner. Metall. Mater., 2019, 26(4): 387

[14]

H. Lu, W. Tian, B.K. Gu, Y.Y. Zhu, and L. Li, TiO2 electron transport bilayer for highly efficient planar perovskite solar cell, Small, 13(2017), No. 38, art. No. 1701535.

[15]

F. Shahvaranfard, M. Altomare, Y. Hou, S. Hejazi, W. Meng, B. Osuagwu, N. Li, C.J. Brabec, and P. Schmuki, Engineering of the electron transport layer/perovskite interface in solar cells designed on TiO2 rutile nanorods, Adv. Funct. Mater., 30(2020), No. 10, art. No. 1909738.

[16]

Manser JS, Saidaminov MI, Christians JA, Bakr OM, Kamat PV. Making and breaking of lead halide perovskites. Acc. Chem. Res., 2016, 49(2): 330.

[17]

Wetzelaer GJAH, Scheepers M, Sempere AM, Momblona C, Ávila J, Bolink HJ. Trap-assisted non-radiative recombination in organic-inorganic perovskite solar cells. Adv. Mater., 2015, 27(11): 1837.

[18]

W.J. Yin, T.T. Shi, and Y.F. Yan, Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber, Appl. Phys. Lett., 104(2014), No. 6, art. No. 063903.

[19]

Zhou HP, Chen Q, Li G, Luo S, Song TB, Duan HS, Hong ZR, You JB, Liu YS, Yang Y. Interface engineering of highly efficient perovskitesolar cells. Sci., 2014, 345(6196): 542.

[20]

Gong WX, Guo H, Zhang HY, Yang J, Chen HY, Wang LP, Hao F, Niu XB. Chlorine-doped SnO2 hydrophobic surfaces for large grain perovskite solar cells. J. Mater. Chem. C, 2020, 8(33): 11638.

[21]

Lou Q, Lou G, Peng RX, Liu ZP, Wang W, Ji MX, Chen C, Zhang XL, Liu C, Ge ZY. Synergistic effect of lewis base polymers and graphene in enhancing the efficiency of perovskite solar cells. ACS Appl. Energy Mater., 2021, 4(4): 3928.

[22]

J.K. Wang, K. Datta, C.H.L. Weijtens, M.M. Wienk, and R.A.J. Janssen, Insights into fullerene passivation of SnO2 electon transport layers in perovskite solar cells, Adv. Funct. Mater., 29(2019), No. 46, art. No. 1905883.

[23]

S. Sonmezoglu and S. Akin, Suppression of the interface-dependent nonradiative recombination by using 2-methylbenzim-idazole as interlayer for highly efficient and stable perovskite solar cells, Nano Energy, 76(2020), art. No. 105127.

[24]

Yi HM, Wang D, Mahmud MA, Haque F, Upama MB, Xu C, Duan LP, Uddin A. Bilayer SnO2 as electron transport layer for highly efficient perovskite solar cells. ACS Appl. Energy. Mater, 2018, 1(11): 6027.

[25]

Yan JJ, Lin ZC, Cai QB, Wen XN, Mu C. Choline chloride-modified SnO2 achieving high output voltage in MAPbI3 perovskite solar cells. ACS Appl. Energy Mater, 2020, 3(4): 3504.

[26]

Yates HM, Meroni SMP, Raptis D, Hodgkinson JL, Watson TM. Flame assisted chemical vapour deposition NiO hole transport layers for mesoporous carbon perovskite cells. J. Mater. Chem. C, 2019, 7(42): 13235.

[27]

Chen C, Zhai Y, Li FM, Tan FR, Yue GT, Zhang WF, Wang MT. High efficiency CH3NH3PbI3:CdS perovskite solar cells with CuInS2 as the hole transporting layer. J. Power Sources, 2017, 341, 396.

[28]

M. Samiee, S. Konduri, B. Ganapathy, R. Kottokkaran, H.A. Abbas, A. Kitahara, P. Joshi, L. Zhang, M. Noack, and V. Dalal, Defect density and dielectric constant in perovskite solar cells, Appl. Phys. Lett., 105(2014), No. 15, art. No. 153502.

[29]

Guo MX, Li FM, Ling LY, Chen C. Electrochemical and atomic force microscopy investigations of the effect of CdS on the local electrical properties of CH3NH3PbI3: CdS perovskite solar cells. J. Mater. Chem. C, 2017, 5(46): 12112.

[30]

Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B, 1993, 47(1): 558.

[31]

Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 1996, 54(16): 11169.

[32]

Blöchl P E. Projector augmented-wave method. Phys. Rev. B, 1994, 50, 17953.

[33]

Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations. Phys. Rev. B, 1976, 13(12): 5188.

[34]

Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem., 2006, 27(15): 1787.

[35]

Momma K, Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr., 2011, 44(6): 1272.

[36]

Zhu LX, Chen C, Li FM, Shen ZT, Weng YJ, Huang QS, Wang MT. Enhancing the efficiency and stability of perovskite solar cells by incorporating CdS and Cd(SCN2H4)2Cl2 into the CH3NH3PbI3 active layer. J. Mater. Chem. A, 2019, 7(3): 1124.

[37]

Wang TY, Daiber B, Frost JM, Mann SA, Garnett EC, Walsh A, Ehrler B. Indirect to direct bandgap transition in methylammonium lead halide perovskite. Energy Environ. Sci., 2017, 10(2): 509.

[38]

Noel NK, Abate A, Stranks SD, Parrott ES, Burlakov VM, Goriely A, Snaith HJ. Enhanced photoluminescence and solar cell performance via lewis base passivation of organic-inorganic lead halide perovskites. ACS Nano, 2014, 8(10): 9815.

[39]

Tan HR, Jain A, Voznyy O, Lan XZ, García de Arquer FP, Fan JZ, Quintero-Bermudez R, Yuan MJ, Zhang B, Zhao YC, Fan FJ, Li PC, Quan LN, Zhao YB, Lu ZH, Yang ZY, Hoogland S, Sargent EH. Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Sci., 2017, 355(6326): 722.

[40]

Johnston MB, Herz LM. Hybrid perovskites for photovoltaics: Charge-carrier recombination, diffusion, and radiative efficiencies. Acc. Chem. Res., 2016, 49(1): 146.

[41]

G. Tumen-Ulzii, C.J. Qin, T. Matsushima, M.R. Leyden, U. Balijipalli, D. Klotz, and C. Adachi, Understanding the degradation of spiro-OMeTAD-based perovskite solar cells at high temperature, Sol. RRL, 4(2020), No. 10, art. No. 2000305.

[42]

Yang YQ, Wu JH, Liu XP, Guo QY, Wang XB, Liu L, Ding Y, Dai SY, Lin JY. Dual functional doping of KMnO4 in spiro-OMeTAD for highly effective planar perovskite solar cells. ACS Appl. Energy Mater., 2019, 2(3): 2188.

[43]

Christians JA, Fung RC, Kamat PV. An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. J. Am. Chem. Soc., 2014, 136(2): 758.

[44]

Kim HS, Lee JW, Yantara N, Boix PP, Kulkarni SA, Mhaisalkar S, Grätzel M, Park NG. High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer. Nano Lett., 2013, 13(6): 2412.

AI Summary AI Mindmap
PDF

100

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/