Mechanism of calcium lignosulfonate in apatite and dolomite flotation system
Bo Feng , Liangzhu Zhang , Wenpu Zhang , Huihui Wang , Zhiyong Gao
International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (9) : 1697 -1704.
Mechanism of calcium lignosulfonate in apatite and dolomite flotation system
Since the physical and chemical properties of apatite and dolomite can be similar, the separation of these two minerals is difficult. Therefore, when performing this separation using the flotation method, it is necessary to search for selective depressants. An experimental research was performed on the separation behavior of apatite and dolomite using calcium lignosulfonate as a depressant, and the mechanism by which this occurs was analyzed. The results show that calcium lignosulfonate has a depressant effect on both apatite and dolomite, but the depressant effect on dolomite is stronger at the same dosage. Mechanism analysis shows that the adsorptive capacity of calcium lignosulfonate on dolomite is higher than that of apatite, which is due to the strong reaction between calcium lignosulfonate and the Ca sites on dolomite. In addition, there is a hydrogen bond between calcium lignosulfonate and dolomite, which further prevents the adsorption of sodium oleate to dolomite, thus greatly inhibiting the flotation of dolomite.
apatite / dolomite / calcium lignosulfonate / depression mechanism
| [1] |
|
| [2] |
Y.Y. Ruan, D.H. He, and C. Ruan, Review on beneficiation techniques and reagents used for phosphate ores, Minerals, 9(2019), No. 4, art. No. 253. |
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
M. Derhy, Y. Taha, R. Hakkou, and M. Benzaazoua, Review of the main factors affecting the flotation of phosphate ores, Minerals, 10(2020), No. 12, art. No. 1109. |
| [11] |
Y.F. Chen, Q.M. Feng, G.F. Zhang, D.Z. Liu, and R.Z. Liu, Effect of sodium pyrophosphate on the reverse flotation of dolomite from apatite, Minerals, 8(2018), No. 7, art. No. 278. |
| [12] |
B. Yang, Z.L. Zhu, H.R. Sun, W.Z. Yin, J. Hong, S.H. Cao, Y. Tang, C. Zhao, and J. Yao, Improving flotation separation of apatite from dolomite using PAMS as a novel eco-friendly depressant, Miner. Eng., 156(2020), art. No. 106492. |
| [13] |
|
| [14] |
Y.Y. Ruan, Z.Q. Zhang, H.H. Luo, C.Q. Xiao, F. Zhou, and R. Chi, Effects of metal ions on the flotation of apatite, dolomite and quartz, Minerals, 8(2018), No. 4, art. No. 141. |
| [15] |
H. Zou, Q.B. Cao, D.W. Liu, X.C. Yu, and H. Lai, Surface features of fluorapatite and dolomite in the reverse flotation process using sulfuric acid as a depressor, Minerals, 9(2019), No. 1, art. No. 33. |
| [16] |
|
| [17] |
Z.C. Pan, Y.F. Wang, Q. Wei, X.T. Chen, F. Jiao, and W.Q. Qin, Effect of sodium pyrophosphate on the flotation separation of calcite from apatite, Sep. Purif. Technol., 242(2020), art. No. 116408. |
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
B. Feng, C.H. Zhong, L.Z. Zhang, Y.T. Guo, T. Wang, and Z.Q. Huang, Effect of surface oxidation on the depression of sphalerite by locust bean gum, Miner. Eng., 146(2020), art. No. 106142. |
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
H.R. Sun, B. Yang, Z.L. Zhu, W.Z. Yin, Q.Y. Sheng, Y. Hou, and J. Yao, New insights into selective-depression mechanism of novel depressant EDTMPS on magnesite and quartz surfaces: Adsorption mechanism, DFT calculations, and adsorption model, Miner. Eng., 160(2021), art. No. 106660. |
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
T. Wang, B. Feng, Y.T. Guo, W.P. Zhang, Y.B. Rao, C.H. Zhong, L.Z. Zhang, C. Cheng, H.H. Wang, and X.P. Luo, The flotation separation behavior of apatite from calcite using carboxymethyl chitosan as depressant, Miner. Eng., 159(2020), art. No. 106635. |
| [40] |
|
| [41] |
J. Yao, H.R. Sun, X.Q. Ban, and W.Z. Yin, Analysis of selective modification of sodium dihydrogen phosphate on surfaces of magnesite and dolomite: Reverse flotation separation, adsorption mechanism, and density functional theory calculations, Colloids Surf. A, 618(2021), art. No. 126448. |
| [42] |
|
| [43] |
|
/
| 〈 |
|
〉 |