Layered barium vanadate nanobelts for high-performance aqueous zinc-ion batteries

Xing-hua Qin , Ye-hong Du , Peng-chao Zhang , Xin-yu Wang , Qiong-qiong Lu , Ai-kai Yang , Jun-cai Sun

International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (10) : 1684 -1692.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (10) : 1684 -1692. DOI: 10.1007/s12613-021-2312-4
Article

Layered barium vanadate nanobelts for high-performance aqueous zinc-ion batteries

Author information +
History +
PDF

Abstract

Aqueous zinc-ion batteries (ZIBs) are deemed as the idea option for large-scale energy storage systems owing to many alluring merits including low manufacture cost, environmental friendliness, and high operations safety. However, to develop high-performance cathode is still significant for practical application of ZIBs. Herein, Ba0.23V2O5·1.1H2O (BaVO) nanobelts were fabricated as cathode materials of ZIBs by a typical hydrothermal synthesis method. Benefiting from the increased interlayer distance of 1.31 nm by Ba2+ and H2O pre-intercalated, the obtained BaVO nanobelts showed an excellent initial discharge capacity of 378 mAh·g−1 at 0.1 A·g−1, a great rate performance (e.g., 172 mAh·g−1 at 5 A·g−1), and a superior capacity retention (93% after 2000 cycles at 5 A·g−1).

Keywords

aqueous zinc-ion batteries / barium vanadate nanobelts / increased interlayer distance / long cycle life

Cite this article

Download citation ▾
Xing-hua Qin, Ye-hong Du, Peng-chao Zhang, Xin-yu Wang, Qiong-qiong Lu, Ai-kai Yang, Jun-cai Sun. Layered barium vanadate nanobelts for high-performance aqueous zinc-ion batteries. International Journal of Minerals, Metallurgy, and Materials, 2021, 28(10): 1684-1692 DOI:10.1007/s12613-021-2312-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Nitta N, Wu FX, Lee JT, Yushin G. Li-ion battery materials: Present and future. Mater. Today, 2015, 18(5): 252.

[2]

Shao LY, Wang SG, Wu FD, Shi XY, Sun ZP, Tang YX. Pampas grass-inspired FeOOH nanobelts as high performance anodes for sodium ion batteries. J. Energy Chem., 2021, 54, 138.

[3]

Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature, 2001, 414(6861): 359.

[4]

X.Y. Wang, L.W. Ma, P.C. Zhang, H.Y. Wang, S. Li, S.J. Ji, Z.S. Wen, and J.C. Sun, Vanadium pentoxide nanosheets as cathodes for aqueous zinc-ion batteries with high rate capability and long durability, Appl. Surf. Sci., 502(2020), art. No. 144207.

[5]

M.S. Zhu, J.P. Hu, Q.Q. Lu, H.Y. Dong, D.D. Karnaushenko, C. Becker, D. Karnaushenko, Y. Li, H.M. Tang, Z. Qu, J. Ge, and O.G. Schmidt, A patternable and in situ formed polymeric zinc blanket for a reversible zinc anode in a skin-mountable microbattery, Adv. Mater., 33(2021), No. 8, art. No. 2007497.

[6]

Liu S, Pan GL, Li GR, Gao XP. Copper hexacyanoferrate nanoparticles as cathode material for aqueous Al-ion batteries. J. Mater. Chem. A, 2015, 3(3): 959.

[7]

Canepa P, Sai Gautam G, Hannah DC, Malik R, Liu M, Gallagher KG, Persson KA, Ceder G. Odyssey of multivalent cathode materials: Open questions and future challenges. Chem. Rev., 2017, 117(5): 4287.

[8]

Hu T, Feng ZY, Zhang YF, Liu YY, Sun JJ, Zheng JQ, Jiang HM, Wang P, Dong XY, Meng CG. “Double guarantee mechanism” of Ca2+-intercalation and rGO-integration ensures hydrated vanadium oxide with high performance for aqueous zinc-ion batteries. Inorg. Chem. Front., 2021, 8(1): 79.

[9]

Du YH, Wang XY, Sun JC. Tunable oxygen vacancy concentration in vanadium oxide as mass-produced cathode for aqueous zinc-ion batteries. Nano Res., 2021, 14(3): 754.

[10]

Wang XY, Qin XH, Lu QQ, Han MM, Omar A, Mikhailova D. Mixed phase sodium manganese oxide as cathode for enhanced aqueous zinc-ion storage. Chin. J. Chem. Eng., 2020, 28(8): 2214.

[11]

Dong Y, Jia M, Wang YY, Xu JZ, Liu YC, Jiao LF, Zhang N. Long-life zinc/vanadium pentoxide battery enabled by a concentrated aqueous ZnSO4 electrolyte with proton and zinc ion co-intercalation. ACS Appl. Energy Mater., 2020, 3(11): 11183.

[12]

Zhang N, Dong Y, Wang YY, Wang YX, Li JJ, Xu JZ, Liu YC, Jiao LF, Cheng FY. Ultrafast rechargeable zinc battery based on high-voltage graphite cathode and stable non-aqueous electrolyte. ACS Appl. Mater. Interfaces, 2019, 11(36): 32978.

[13]

Zhang N, Chen XY, Yu M, Niu ZQ, Cheng FY, Chen J. Materials chemistry for rechargeable zinc-ion batteries. Chem. Soc. Rev., 2020, 49(13): 4203.

[14]

L. Xu, Y. Zhang, J. Zheng, H. Jiang, T. Hu, and C. Meng, Ammonium ion intercalated hydrated vanadium pentoxide for advanced aqueous rechargeable Zn-ion batteries, Mater. Today Energy, 18(2020), art. No. 100509.

[15]

S.D. Liu, L. Kang, J.M. Kim, Y.T. Chun, J. Zhang, and S.C. Jun, Recent advances in vanadium-based aqueous rechargeable zinc-ion batteries, Adv. Energy Mater., 10(2020), No. 25, art. No. 2000477.

[16]

Y.R. Wang, C.X. Wang, Z.G. Ni, Y.M. Gu, B.L. Wang, Z.W. Guo, Z. Wang, D. Bin, J. Ma, and Y.G. Wang, Binding zinc ions by carboxyl groups from adjacent molecules toward long-life aqueous zinc-organic batteries, Adv. Mater., 32(2020), No. 16, art. No. 2000338.

[17]

Zampardi G, La Mantia F. Prussian blue analogues as aqueous Zn-ion batteries electrodes: Current challenges and future perspectives. Curr. Opin. Electrochem., 2020, 21, 84.

[18]

M.Q. Liu, Q.H. Zhao, H. Liu, J.L. Yang, X. Chen, L.Y. Yang, Y.H. Cui, W.Y. Huang, W.G. Zhao, A.Y. Song, Y.T. Wang, S.X. Ding, Y.L. Song, G.Y. Qian, H.B. Chen, and F. Pan, Tuning phase evolution of β-MnO2 during microwave hydrothermal synthesis for high-performance aqueous Zn ion battery, Nano Energy, 64(2019), art. No. 103942.

[19]

Y.Y. Liu, Z.H. Pan, D. Tian, T. Hu, H.M. Jiang, J. Yang, J.J. Sun, J.Q. Zheng, C.G. Meng, and Y.F. Zhang, Employing “one for two” strategy to design polyaniline-intercalated hydrated vanadium oxide with expanded interlayer spacing for high-performance aqueous zinc-ion batteries, Chem. Eng. J., 399(2020), art. No. 125842.

[20]

Zhang YF, Jiang HM, Xu L, Gao ZM, Meng CG. Ammonium vanadium oxide [(NH4)2V4O9] sheets for high capacity electrodes in aqueous zinc ion batteries. ACS Appl. Energy Mater., 2019, 2(11): 7861.

[21]

D.P. Kundu, B.D. Adams, V. Duffort, S.H. Vajargah, and L.F. Nazar, A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode, Nat. Energy, 1(2016), art. No. 16119.

[22]

Ming FW, Liang HF, Lei YJ, Kandambeth S, Eddaoudi M, Alshareef HN. Layered MgxV2O5·nH2O as cathode material for high-performance aqueous zinc ion batteries. ACS Energy Lett., 2018, 3(10): 2602.

[23]

P. He, G.B. Zhang, X.B. Liao, M.Y. Yan, X. Xu, Q.Y. An, J. Liu, and L.Q. Mai, Sodium ion stabilized vanadium oxide nanowire cathode for high-performance zinc-ion batteries, Adv. Energy Mater., 8(2018), No. 10, art. No. 1702463.

[24]

W.W. Zhang, C. Tang, B.X. Lan, L.N. Chen, W. Tang, C.L. Zuo, S.J. Dong, Q.Y. An, and P. Luo, K0.23V2O5 as a promising cathode material for rechargeable aqueous zinc ion batteries with excellent performance, J. Alloys Compd., 819(2020), art. No. 152971.

[25]

H.B. Geng, M. Cheng, B. Wang, Y. Yang, Y.F. Zhang, and C.C. Li, Electronic structure regulation of layered vanadium oxide via interlayer doping strategy toward superior high-rate and low-temperature zinc-ion batteries, Adv. Funct. Mater., 30(2020), No. 6, art. No. 1907684.

[26]

J.Q. Zheng, C.F. Liu, M. Tian, X.X. Jia, E.P. Jahrman, G.T. Seidler, S.Q. Zhang, Y.Y. Liu, Y.F. Zhang, C.G. Meng, and G.Z. Cao, Fast and reversible zinc ion intercalation in Al-ion modified hydrated vanadate, Nano Energy, 70(2020), art. No. 104519.

[27]

J.W. Li, K. McColl, X.K. Lu, S. Sathasivam, H.B. Dong, L.Q. Kang, Z.N. Li, S.Y. Zhao, A.G. Kafizas, R. Wang, D.J.L. Brett, P.R. Shearing, F. Corà, G.J. He, C.J. Carmalt, and I.P. Parkin, Multi-scale investigations of δ-Ni0.25V2O5·nH2O cathode materials in aqueous zinc-ion batteries, Adv. Energy Mater., 10(2020), No. 15, art. No. 2000058.

[28]

Zhang YF, Zheng JQ, Zhao YF, Hu T, Gao ZM, Meng CG. Fabrication of V2O5 with various morphologies for highperformance electrochemical capacitor. Appl. Surf. Sci., 2016, 377, 385.

[29]

Y.H. Du, X.Y. Wang, J.Z. Man, and J.C. Sun, A novel organic-inorganic hybrid V2O5@polyaniline as high-performance cathode for aqueous zinc-ion batteries, Mater. Lett., 272(2020), art. No. 127813.

[30]

X.H. Qin, X.Y. Wang, J.C. Sun, Q.Q. Lu, A. Omar, and D. Mikhailova, Polypyrrole wrapped V2O5 nanowires composite for advanced aqueous zinc-ion batteries, Front. Energy Res., 8(2020), art. No. 199.

[31]

Zhang N, Dong Y, Jia M, Bian X, Wang YY, Qiu MD, Xu JZ, Liu YC, Jiao LF, Cheng FY. Rechargeable aqueous Zn-V2O5 battery with high energy density and long cycle life. ACS Energy Lett., 2018, 3(6): 1366.

[32]

Xu Y, Han XS, Zheng L, Yan WS, Xie Y. Pillar effect on cyclability enhancement for aqueous lithium ion batteries: A new material of β-vanadium bronze M0.33V2O5 (M = Ag, Na) nanowires. J. Mater. Chem., 2011, 21(38): 14466.

[33]

Wang X, Xi BJ, Ma XJ, Feng ZY, Jia YX, Feng JK, Qian YT, Xiong SL. Boosting zinc-ion storage capability by effectively suppressing vanadium dissolution based on robust layered barium vanadate. Nano Lett., 2020, 20(4): 2899.

[34]

F.J. Tang, W.J. Zhou, M.F. Chen, J.Z. Chen, and J.L. Xu, Flexible free-standing paper electrodes based on reduced graphene oxide/δ-NaxV2O5nH2O nanocomposite for high-performance aqueous zinc-ion batteries, Electrochim. Acta, 328(2019), art. No. 135137.

[35]

Wei TY, Li Q, Yang GZ, Wang CX. Highly reversible and long-life cycling aqueous zinc-ion battery based on ultrathin (NH4)2V10O25·8H2O nanobelts. J. Mater. Chem. A, 2018, 6(41): 20402.

[36]

C. Xia, J. Guo, Y.J. Lei, H.F. Liang, C. Zhao, and H.N. Alshareef, Rechargeable aqueous zinc-ion battery based on porous framework zinc pyrovanadate intercalation cathode, Adv. Mater., 30(2018), No. 5, art. No. 1705580.

[37]

Yang GZ, Wei TY, Wang CX. Self-healing lamellar structure boosts highly stable zinc-storage property of bilayered vanadium oxides. ACS Appl. Mater. Interfaces, 2018, 10(41): 35079.

[38]

P. He, M.Y. Yan, G.B. Zhang, R.M. Sun, L.N. Chen, Q.Y. An, and L.Q. Mai, Layered VS2 nanosheet-based aqueous Zn ion battery cathode, Adv. Energy Mater., 7(2017), No. 11, art. No. 1601920.

[39]

Li GL, Yang Z, Jiang Y, Jin CH, Huang W, Ding XL, Huang YH. Towards polyvalent ion batteries: A zinc-ion battery based on NASICON structured Na3V2(PO4)3. Nano Energy, 2016, 25, 211.

[40]

Lan BX, Peng Z, Chen LN, Tang C, Dong SJ, Chen C, Zhou M, Chen C, An QY, Luo P. Metallic silver doped vanadium pentoxide cathode for aqueous rechargeable zinc ion batteries. J. Alloys Compd., 2019, 787, 9.

[41]

Alfaruqi MH, Mathew V, Song JJ, Kim S, Islam S, Pham DT, Jo J, Kim S, Baboo JP, Xiu ZL, Lee KS, Sun YK, Kim J. Electrochemical zinc intercalation in lithium vanadium oxide: A high-capacity zinc-ion battery cathode. Chem. Mater., 2017, 29(4): 1684.

[42]

P. He, Y.L. Quan, X. Xu, M.Y. Yan, W. Yang, Q.Y. An, L. He, and L.Q. Mai, High-performance aqueous zinc-ion battery based on layered H2V3O8 nanowire cathode, Small, 13(2017), No. 47, art. No. 1702551.

[43]

Wu XW, Li YH, Xiang YH, Liu ZX, He ZQ, Wu XM, Li YJ, Xiong LZ, Li CC, Chen J. The electrochemical performance of aqueous rechargeable battery of Zn/Na0.44MnO2 based on hybrid electrolyte. J. Power Sources, 2016, 336, 35.

[44]

Yang YQ, Tang Y, Fang GZ, Shan LT, Guo JS, Zhang WY, Wang C, Wang LB, Zhou J, Liang SQ. Li+ intercalated V2O5·nH2O with enlarged layer spacing and fast ion diffusion as an aqueous zinc-ion battery cathode. Energy Environ. Sci., 2018, 11(11): 3157.

[45]

N. Zhang, M. Jia, Y. Dong, Y.Y. Wang, J.Z. Xu, Y.C. Liu, L.F. Jiao, and F.Y. Cheng, Hydrated layered vanadium oxide as a highly reversible cathode for rechargeable aqueous zinc batteries, Adv. Funct. Mater., 29(2019), No. 10, art. No. 1807331.

[46]

Wang XY, Ma LW, Sun JC. Vanadium pentoxide nanosheets in-situ spaced with acetylene black as cathodes for high-performance zinc-ion batteries. ACS Appl. Mater. Interfaces, 2019, 11(44): 41297.

[47]

M.Y. Yan, P. He, Y. Chen, S.Y. Wang, Q.L. Wei, K.N. Zhao, X. Xu, Q.Y. An, Y. Shuang, Y.Y. Shao, K.T. Mueller, L.Q. Mai, J. Liu, and J.H. Yang, Water-lubricated intercalation in V2O5·nH2O for high-capacity and high-rate aqueous rechargeable zinc batteries, Adv. Mater., 30(2018), No. 1, art. No. 1703725.

[48]

L.Y. Shao, J.Z. Hong, S.G. Wang, F.D. Wu, F. Yang, X.Y. Shi, and Z.P. Sun, Urchin-like FeS2 hierarchitectures wrapped with N-doped multi-wall carbon nanotubes@rGO as high-rate anode for sodium ion batteries, J. Power Sources, 491(2021), art. No. 229627.

AI Summary AI Mindmap
PDF

122

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/