Characterization and ultraviolet—visible shielding property of samarium—cerium compounds containing Sm2O2S prepared by co-precipitation method

Yanping Li , Xue Bian , Xun Jin , Peng Cen , Wenyuan Wu , Gaofeng Fu

International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (9) : 1809 -1816.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (9) : 1809 -1816. DOI: 10.1007/s12613-021-2309-z
Article

Characterization and ultraviolet—visible shielding property of samarium—cerium compounds containing Sm2O2S prepared by co-precipitation method

Author information +
History +
PDF

Abstract

Since ultraviolet (UV) light, as well as blue light, which is part of visible light, is harmful to skin, samarium—cerium compounds containing Sm2O2S were synthesized by co-precipitation method. This kind of compounds blocks not only UV light, but also blue light. The minimum values of average transmittance (360–450 nm) and band gap of samarium—cerium compounds were 8.90% and 2.76 eV, respectively, which were less than 13.96% and 3.01 eV of CeO2. Elemental analysis (EA), X-ray diffraction (XRD), Fourier transformation infrared (FTIR), and Raman spectra determined that the samples contained Ce4O7, Sm2O2S, Sm2O3, and Sm2O2SO4. The microstructure of samples was analyzed by scanning and transmission electron microscopies (SEM and TEM). X-ray photoelectron spectrum (XPS) showed that cerium had Ce3+ and Ce4+ valence states, and oxygen was divided into lattice oxygen and oxygen vacancy, which was the direct cause of the decrease of average transmittance and band gap.

Keywords

band gap / co-precipitation method / samarium—cerium compound / ultraviolet light / blue light

Cite this article

Download citation ▾
Yanping Li, Xue Bian, Xun Jin, Peng Cen, Wenyuan Wu, Gaofeng Fu. Characterization and ultraviolet—visible shielding property of samarium—cerium compounds containing Sm2O2S prepared by co-precipitation method. International Journal of Minerals, Metallurgy, and Materials, 2022, 29(9): 1809-1816 DOI:10.1007/s12613-021-2309-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Montazer M, Pakdel E, Moghadam MB. Nano titanium dioxide on wool keratin as UV absorber stabilized by butane tetra carboxylic acid (BTCA): A statistical prospect. Fibers Polym., 2010, 11(7): 967.

[2]

Lim K, Chow WS, Pung SY. Enhancement of thermal stability and UV resistance of halloysite nanotubes using zinc oxide functionalization via a solvent-free approach. Int. J. Miner. Metall. Mater., 2019, 26(6): 787.

[3]

Gangopadhyay S, Frolov DD, Masunov AE, Seal S. Structure and properties of cerium oxides in bulk and nanoparticulate forms. J. Alloys Compd., 2014, 584, 199.

[4]

Zhang SS, Li J, Guo XP, Liu LH, Wei H, Zhang YW. Nanostructured composite films of ceria nanoparticles with anti-UV and scratch protection properties constructed using a layer-by-layer strategy. Appl. Surf. Sci., 2016, 382, 316.

[5]

Sun CW, Li H, Zhang HR, Wang ZX, Chen LQ. Controlled synthesis of CeO2 nanorods by a solvothermal method. Nanotechnology, 2005, 16(9): 1454.

[6]

Pirmohamed T, Dowding JM, Singh S, Wasserman B, Heckert E, Karakoti AS, King JES, Seal S, Self WT. Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem. Commun., 2010, 46(16): 2737.

[7]

Shcherbakov AB, Zholobak NM, Ivanov VK, Ivanova OS, Marchevsky AV, Baranchikov AE, Spivak NY, Tretyakov YD. Synthesis and antioxidant activity of biocompatible maltodextrin-stabilized aqueous sols of nanocrystalline ceria. Russ. J. Inorg. Chem., 2012, 57(11): 1411.

[8]

Dai XC, Tang ZM, Ju YH, Ni N, Gao HQ, Wang JJ, Yin LQ, Liu AL, Weng SJ, Zhang JH, Zhang J, Gu P. Effects of blue light-exposed retinal pigment epithelial cells on the process of ametropia. Biochem. Biophys. Res. Commun., 2021, 549, 14.

[9]

Dumitrescu I, Iordache OG, Mitran CE, Perdum E, Săndulache IM, Secăreanu LO, Dincă LC, Sobetkii A, Diamandescu L. Attempts to improve the self-cleaning effect of the textile materials. Ind. Textilă, 2020, 71(3): 252.

[10]

Chi LN, Qian YJ, Guo JQ, Wang XZ, Arandiyan H, Jiang Z. Novel g-C3N4/TiO2/PAA/PTFE ultrafiltration membrane enabling enhanced antifouling and exceptional visible-light photocatalytic self-cleaning. Catal. Today, 2019, 335, 527.

[11]

Su KS, Tao YY, Zhang J. Highly transparent plasticized PVC composite film with ideal ultraviolet/high-energy short-wavelength blue light shielding. J. Mater. Sci., 2021, 56(30): 17353.

[12]

Hamblin MR. Fullerenes as photosensitizers in photodynamic therapy: Pros and cons. Photochem. Photobiol. Sci., 2018, 17(11): 1515.

[13]

Pires AM, Serra OA, Davolos MR. Yttrium oxysulfide nanosized spherical particles doped with Yb and Er or Yb and Tm: Efficient materials for up-converting phosphor technology field. J. Alloys Compd., 2004, 374(1–2): 181.

[14]

Han PD, Huang XG, Zhang QT. Laser stealth absorbent of samarium oxysulfide prepared by flux method. Rare Met., 2011, 30(6): 616.

[15]

Li YP, Bian X, Liu Y, Wu WY, Fu GF. Synthesis and characterization of ceria nanoparticles by complex-precipitation route. Int. J. Miner. Metall. Mater., 2022, 29(2): 292.

[16]

Matijević E, Hsu WP. Preparation and properties of monodispersed colloidal particles of lanthanide compounds: I. Gadolinium, europium, terbium, samarium, and cerium(III). J. Colloid Interface Sci., 1987, 118(2): 506.

[17]

Verma A, Karar N, Bakhshi AK, Chander H, Shivaprasad SM, Agnihotry SA. Structural, morphological and photoluminescence characteristics of sol—gel derived nano phase CeO2 films deposited using citric acid. J. Nanopart. Res., 2007, 9(2): 317.

[18]

Yin LX, Wang YQ, Pang GS, Koltypin Y, Gedanken A. Sonochemical synthesis of cerium oxide nanoparticles-effect of additives and quantum size effect. J. Colloid Interface Sci., 2002, 246(1): 78.

[19]

Zhang DS, Fu HX, Shi LY, Pan CS, Li Q, Chu YL, Yu WJ. Synthesis of CeO2 nanorods via ultrasonication assisted by polyethylene glycol. Inorg. Chem., 2007, 46(7): 2446.

[20]

Zhou YC, Phillips RJ, Switzer JA. Electrochemical synthesis and sintering of nanocrystalline cerium(IV) oxide powders. J. Am. Ceram. Soc., 1995, 78(4): 981.

[21]

Wang J, Zeng W, Wang ZC. Assembly of 2D nanosheets into 3D flower-like NiO: Synthesis and the influence of petal thickness on gas-sensing properties. Ceram. Int., 2016, 42(3): 4567.

[22]

Chen Y, Liu TM, Chen CL, Guo WW, Sun R, Lv SH, Saito M, Tsukimoto S, Wang ZC. Synthesis and characterization of CeO2 nano-rods. Ceram. Int., 2013, 39(6): 6607.

[23]

Chen Y, Lv SH, Chen CL, Qiu CJ, Fan XF, Wang ZC. Controllable synthesis of ceria nanoparticles with uniform reactive {100} exposure planes. J. Phys. Chem. C, 2014, 118(8): 4437.

[24]

Zhang ML, Chen Y, Qiu CJ, Fan XF, Chen CL, Wang ZC. Synthesis and atomic-scale characterization of CeO2 nano-octahedrons. Physica E, 2014, 64, 218.

[25]

Chen Y, Liu TM, Chen CL, Guo WW, Sun R, Lv SH, Saito M, Tsukimoto S, Wang ZC. Hydrothermal synthesis of ceria hybrid architectures of nano-rods and nano-octahedrons. Mater. Lett., 2013, 96, 210.

[26]

Chen Y, Qiu CJ, Chen CL, Fan XF, Xu SB, Guo WW, Wang ZC. Facile synthesis of ceria nanospheres by Ce(OH)CO3 precursors. Mater. Lett., 2014, 122, 90.

[27]

Hu PF, Chen Y, Sun R, Chen Y, Yin YR, Wang ZC. Synthesis, characterization and frictional wear behavior of ceria hybrid architectures with {111} exposure planes. Appl. Surf. Sci., 2017, 401, 100.

[28]

Lo CL, Duh JG, Chiou BS, Peng CC, Ozawa L. Synthesis of Eu3+-activated yttrium oxysulfide red phosphor by flux fusion method. Mater. Chem. Phys., 2001, 71(2): 179.

[29]

Tseng YH, Chiou BS, Peng CC, Ozawa L. Spectral properties of Eu3+-activated yttrium oxysulfide red phosphor. Thin Solid Films, 1998, 330(2): 173.

[30]

Ding YJ, Wang LX, Zhang QT, Pan SB. Enhanced luminescence of La3+-doped gadolinium oxysulfide with tunable crystalline size. J. Electron. Mater., 2017, 46(10): 5986.

[31]

Lei BF, Liu YL, Tang GB, Ye ZR, Shi CS. Unusual afterglow properties of Tm3+ doped yttrium oxysulfide. Chem. Res. Chin. Univ., 2003, 24(5): 782

[32]

Ishikawa A, Yamada Y, Takata T, Kondo JN, Hara M, Kobayashi H, Domen K. Novel synthesis and photocatalytic activity of oxysulfide Sm2Ti2S2O5. Chem. Mater., 2003, 15(23): 4442.

[33]

Georgobiani AN, Bogatyreva AA, Ishchenko VM, Manashirov OY, Gutan VB, Semendyaev SV. A new multifunctional phosphor based on yttrium oxysulfide. Inorg. Mater., 2007, 43(10): 1073.

[34]

Altmannshofer S, Johrendt D. Synthesis, crystal structure and magnetism of the new oxysulfide Ce3NbO4S3. Z. Anorg. Allg. Chem., 2008, 634(8): 1361.

[35]

Zhao F, Yuan M, Zhang W, Gao S. Monodisperse lanthanide oxysulfide nanocrystals. J. Am. Chem. Soc., 2006, 128(36): 11758.

[36]

Rodrigues RV, Machado LC, Matos JR, Muri EJB, Marins AAL, Brito HF, Passos CAC. Oxysulfate/oxysulfide of Tb3+ obtained by thermal decomposition of terbium sulfate hydrates under different atmospheres. J. Therm. Anal. Calorim., 2015, 122(2): 765.

[37]

Hirai T, Orikoshi T. Preparation of Gd2O3: Yb, Er and Gd2O2S: Yb, Er infrared-to-visible conversion phosphor ultrafine particles using an emulsion liquid membrane system. J. Colloid Interface Sci., 2004, 269(1): 103.

[38]

Thirumalai J, Chandramohan R, Auluck S, Mahalingam T, Srikumar SR. Controlled synthesis, optical and electronic properties of Eu3+ doped yttrium oxysulfide (Y2O2S) nanostructures. J. Colloid Interface Sci., 2009, 336(2): 889.

[39]

Lian JB, Sun XD, Li JG, Li XD. Synthesis, characterization and photoluminescence properties of (Gd0.99, Pr0.01)2O2S sub-microphosphor by homogeneous precipitation method. Opt. Mater., 2011, 33(4): 596.

[40]

Cichos J, Karbowiak M, Hreniak D, Stręk W. Synthesis and characterization of monodisperse Eu3+ doped gadolinium oxysulfide nanocrystals. J. Rare Earths, 2016, 34(8): 850.

[41]

Ueda K, Inoue S, Hirose S, Kawazoe H, Hosono H. Transparent p-type semiconductor: LaCuOS layered oxysulfide. Appl. Phys. Lett., 2000, 77(17): 2701.

[42]

Dhanaraj J, Geethalakshmi M, Jagannathan R, Kutty TRN. Eu3+ doped yttrium oxysulfide nanocrystals—crystallite size and luminescence transition(s). Chem. Phys. Lett., 2004, 387(1–3): 23.

[43]

Bakovets VV, Levashova TM, Filatova IY, Maksimovskii EA, Kupcha AE. Vapor phase growth of nanostructured yttrium oxysulfide films. Inorg. Mater., 2008, 44(1): 67.

[44]

Tauc J, Grigorovici R, Vancu A. Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi B, 1966, 15(2): 627.

[45]

Davis EA, Mott NF. Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos. Mag., 1970, 22(179): 0903.

[46]

Qiu BC, Wang C, Zhang N, Cai LJ, Xiong YJ, Chai Y. CeO2-induced interfacial Co2+ octahedral sites and oxygen vacancies for water oxidation. ACS Catal., 2019, 9(7): 6484.

AI Summary AI Mindmap
PDF

106

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/