Influence of grain refinement on the corrosion behavior of metallic materials: A review

Pan-jun Wang , Ling-wei Ma , Xue-qun Cheng , Xiao-gang Li

International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (7) : 1112 -1126.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2021, Vol. 28 ›› Issue (7) : 1112 -1126. DOI: 10.1007/s12613-021-2308-0
Invited Review

Influence of grain refinement on the corrosion behavior of metallic materials: A review

Author information +
History +
PDF

Abstract

Grain refinement can strengthen the mechanical properties of materials according to the classical Hall-Petch relationship but does not always result in better corrosion resistance. During the past few decades, various techniques have been dedicated to refining grain, along with relevant studies on corrosion behavior, including general corrosion, pitting corrosion, and stress corrosion cracking. However, the fundamental consensus on how grain size influences corrosion behavior has not been reached. This paper reviews existing literature on the beneficial and detrimental effects of grain refinement on corrosion behavior. Moreover, the effects of microstructural changes (i.e., grain boundary, dislocation, texture, residual stress, impurities, and second phase) resulting from grain refinement on corrosion behavior are discussed. The grain refinement not only has an impact on the corrosion performance, but also results in microstructural changes that have a non-negligible effect on corrosion behavior or even outweigh that of grain refinement. Grain size is not the only factor affecting the corrosion behavior of metallic materials; thus, the overall influence of microstructures on corrosion behavior should be understood.

Keywords

corrosion behavior / grain refinement / microstructure / high-temperature oxidation

Cite this article

Download citation ▾
Pan-jun Wang, Ling-wei Ma, Xue-qun Cheng, Xiao-gang Li. Influence of grain refinement on the corrosion behavior of metallic materials: A review. International Journal of Minerals, Metallurgy, and Materials, 2021, 28(7): 1112-1126 DOI:10.1007/s12613-021-2308-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Li XG, Zhang DW, Liu ZY, Li Z, Du CW, Dong CF. Materials science: Share corrosion data. Nature, 2015, 527(7579): 441.

[2]

Tayyab KB, Farooq A, Alvi AA, Nadeem AB, Deen KM. Corrosion behavior of cold-rolled and post heat-treated 316L stainless steel in 0.9wt% NaCl solution. Int. J. Miner. Metall. Mater., 2021, 28(3): 440.

[3]

Dai CD, Fu Y, Guo JX, Du CW. Effects of substrate temperature and deposition time on the morphology and corrosion resistance of FeCoCrNiMo0.3 high-entropy alloy coating fabricated by magnetron sputtering. Int. J. Miner. Metall. Mater., 2020, 27(10): 1388.

[4]

Santa-Cruz LA, Machado G, Vicente AA, Hermenegildo TFC, Santos TFA. Effect of high anodic polarization on the passive layer properties of superduplex stainless steel friction stir welds at different chloride electrolyte pH values and temperatures. Int. J. Miner. Metall. Mater., 2019, 26(6): 710.

[5]

Ralston KD, Birbilis N, Davies CHJ. Revealing the relationship between grain size and corrosion rate of metals. Scripta Mater., 2010, 63(12): 1201.

[6]

Argade GR, Panigrahi SK, Mishra RS. Effects of grain size on the corrosion resistance of wrought magnesium alloys containing neodymium. Corros. Sci., 2012, 58, 145.

[7]

K.D. Ralston and N. Birbilis, Effect of grain size on corrosion: A review, Corrosion, 66(2010), No. 7, art. No. 075005.

[8]

Miyamoto H. Corrosion of ultrafine grained materials by severe plastic deformation, an overview. Mater. Trans., 2016, 57(5): 559.

[9]

Wang SG, Shen CB, Long K, Yang HY, Wang FH, Zhang ZD. Preparation and electrochemical corrosion behavior of bulk nanocrystalline ingot iron in HCl acid solution. J. Phys. Chem. B, 2005, 109(7): 2499.

[10]

Wang SG, Shen CB, Long K, Zhang T, Wang FH, Zhang ZD. The electrochemical corrosion of bulk nanocrystalline ingot iron in acidic sulfate solution. J. Phys. Chem. B, 2006, 110(1): 377.

[11]

Zheng ZJ, Gao Y, Gui Y, Zhu M. Corrosion behaviour of nanocrystalline 304 stainless steel prepared by equal channel angular pressing. Corros. Sci., 2012, 54, 60.

[12]

Liu L, Li Y, Wang FH. Electrochemical corrosion behavior of nanocrystalline materials—A review. J. Mater. Sci. Technol., 2010, 26(1): 1.

[13]

Hoseini M, Shahryari A, Omanovic S, Szpunar JA. Comparative effect of grain size and texture on the corrosion behaviour of commercially pure titanium processed by equal channel angular pressing. Corros. Sci., 2009, 51(12): 3064.

[14]

Zhang Z, Zhang JH, Wang J, Li ZH, Xie JS, Liu SJ, Guan K, Wu RZ. Toward the development of Mg alloys with simultaneously improved strength and ductility by refining grain size via the deformation process. Int. J. Miner. Metall. Mater., 2021, 28(1): 30.

[15]

Furukawa M, Iwahashi Y, Horita Z, Nemoto M, Langdon TG. The shearing characteristics associated with equal-channel angular pressing. Mater. Sci. Eng. A, 1998, 257(2): 328.

[16]

Huang Y, Langdon TG. Advances in ultrafine-grained materials. Mater. Today, 2013, 16(3): 85.

[17]

Jiang JF, Wang Y, Luo SJ. Application of equal channel angular extrusion to semi-solid processing of magnesium alloy. Mater. Charact., 2007, 58(2): 190.

[18]

Yan Y, Zhang GQ, Chen LJ, Li XW. Thickness-related synchronous increase in strength and ductility of ultrafine-grained pure aluminum sheets. Int. J. Miner. Metall. Mater., 2019, 26(11): 1450.

[19]

Xu C, Horita Z, Langdon TG. The evolution of homogeneity in an aluminum alloy processed using high-pressure torsion. Acta Mater., 2008, 56(18): 5168.

[20]

Langdon TG. Twenty-five years of ultrafine-grained materials: Achieving exceptional properties through grain refinement. Acta Mater., 2013, 61(19): 7035.

[21]

Saito Y, Utsunomiya H, Tsuji N, Sakai T. Novel ultrahigh straining process for bulk materials—Development of the accumulative roll-bonding (ARB) process. Acta Mater., 1999, 47(2): 579.

[22]

Sharma V, Prakash U, Kumar BVM. Surface composites by friction stir processing: A review. J. Mater. Process. Technol., 2015, 224, 117.

[23]

Mishra RS, Ma ZY. Friction stir welding and processing. Mater. Sci. Eng. R, 2005, 50(1–2): 1.

[24]

Song R, Ponge D, Raabe D, Speer JG, Matlock DK. Overview of processing, microstructure and mechanical properties of ultrafine grained bcc steels. Mater. Sci. Eng. A, 2006, 441(1–2): 1.

[25]

Eghbali B. Study on the ferrite grain refinement during inter-critical deformation of a microalloyed steel. Mater. Sci. Eng. A, 2010, 527(15): 3407.

[26]

Jing TF, Gao YW, Qiao GY, Li Q, Wang TS, Wang W, Xiao FR, Cai DY, Song XY, Zhao X. Nanocrystalline steel processed by severe rolling of lath martensite. Mater. Sci. Eng. A, 2006, 432(1–2): 216

[27]

Gupta RK, Birbilis N. The influence of nanocrystalline structure and processing route on corrosion of stainless steel: A review. Corros. Sci., 2015, 92, 1.

[28]

Robertson A, Erb U, Palumbo G. Practical applications for electrodeposited nanocrystalline materials. Nanostruct. Mater., 1999, 12(5–8): 1035.

[29]

Cheung C, Djuanda F, Erb U, Palumbo G. Electrode-position of nanocrystalline Ni-Fe alloys. Nanostruct. Mater., 1995, 5(5): 513.

[30]

I. Khazi and U. Mescheder, Micromechanical properties of anomalously electrodeposited nanocrystalline Nickel-Cobalt alloys: A review, Mater. Res. Express, 6(2019), No. 8, art. No. 082001.

[31]

Kumar KS, Van Swygenhoven H, Suresh S. Mechanical behavior of nanocrystalline metals and alloys. Acta Mater., 2003, 51(19): 5743.

[32]

Monaco L, Avramovic-Cingara G, Palumbo G, Erb U. Corrosion behaviour of electrodeposited nanocrystalline nickel-iron (NiFe) alloys in dilute H2SO4. Corros. Sci., 2018, 130, 103.

[33]

Balyanov A, Kutnyakova J, Amirkhanova NA, Stolyarov VV, Valiev RZ, Liao XZ, Zhao YH, Jiang YB, Xu HF, Lowe TC, Zhu YT. Corrosion resistance of ultra fine-grained Ti. Scripta Mater., 2004, 51(3): 225.

[34]

Kim HS, Yoo SJ, Ahn JW, Kim DH, Kim WJ. Ultrafine grained titanium sheets with high strength and high corrosion resistance. Mater. Sci. Eng. A, 2011, 528(29–30): 8479.

[35]

Maleki-Ghaleh H, Hajizadeh K, Hadjizadeh A, Shakeri MS, Ghobadi Alamdari S, Masoudfar S, Aghaie E, Javidi M, Zdunek J, Kurzydlowski KJ. Electrochemical and cellular behavior of ultrafine-grained titanium in vitro. Mater. Sci. Eng., C, 2014, 39, 299.

[36]

Mishra R, Balasubramaniam R. Effect of nanocrystalline grain size on the electrochemical and corrosion behavior of nickel. Corros. Sci., 2004, 46(12): 3019.

[37]

Lv J. Effect of grain size on mechanical property and corrosion resistance of the Ni-based alloy 690. J. Mater. Sci. Technol., 2018, 34(9): 1685.

[38]

Afshari V, Dehghanian C. Effects of grain size on the electrochemical corrosion behaviour of electrodeposited nanocrystalline Fe coatings in alkaline solution. Corros. Sci., 2009, 51(8): 1844.

[39]

Oguzie EE, Wang SG, Li Y, Wang FH. Corrosion and corrosion inhibition characteristics of bulk nanocrystalline ingot iron in sulphuric acid. J. Solid State Electrochem., 2008, 12(6): 721.

[40]

Hadzima B, Janeček M, Estrin Y, Kim HS. Microstructure and corrosion properties of ultrafine-grained interstitial free steel. Mater. Sci. Eng. A, 2007, 462(1–2): 243.

[41]

Zhang LY, Ma AB, Jiang JH, Yang DH, Song D, Chen JQ. Sulphuric acid corrosion of ultrafine-grained mild steel processed by equal-channel angular pressing. Corros. Sci., 2013, 75, 434.

[42]

Zhang LY, Ma AB, Jiang JH, Jie XH. Effect of processing methods on microhardness and acid corrosion behavior of low-carbon steel. Mater. Des., 2015, 65, 115.

[43]

Li Y, Wang F, Liu G. Grain size effect on the electrochemical corrosion behavior of surface nanocrystallized low-carbon steel. Corrosion, 2004, 60(10): 891.

[44]

Wang SG, Sun M, Xu YH, Long K, Zhang ZD. Enhanced localized and uniform corrosion resistances of bulk nanocrystalline 304 stainless steel in high-concentration hydrochloric acid solutions at room temperature. J. Mater. Sci. Technol., 2018, 34(12): 2498.

[45]

Ye W, Li Y, Wang FH. The improvement of the corrosion resistance of 309 stainless steel in the transpassive region by nano-crystallization. Electrochim. Acta, 2009, 54(4): 1339.

[46]

Hao YW, Deng B, Zhong C, Jiang YM, Li J. Effect of surface mechanical attrition treatment on corrosion behavior of 316 stainless steel. J. Iron Steel Res. Int., 2009, 16(2): 68.

[47]

Fattah-Alhosseini A, Vafaeian S. Influence of grain refinement on the electrochemical behavior of AISI 430 ferritic stainless steel in an alkaline solution. Appl. Surf. Sci., 2016, 360, 921.

[48]

Balusamy T, Kumar S, Sankara Narayanan TSN. Effect of surface nanocrystallization on the corrosion behaviour of AISI 409 stainless steel. Corros. Sci., 2010, 52(11): 3826.

[49]

Zhang B, Li Y, Wang FH. Electrochemical corrosion behaviour of microcrystalline aluminium in acidic solutions. Corros. Sci., 2007, 49(5): 2071.

[50]

Song D, Ma AB, Jiang JH, Lin PH, Shi J. Improving corrosion resistance of pure Al through ECAP. Corros. Eng. Sci. Technol., 2011, 46(4): 505.

[51]

Eizadjou M, Fattahi H, Talachi AK, Manesh HD, Janghorban K, Shariat MH. Pitting corrosion susceptibility of ultrafine grains commercially pure aluminium produced by accumulative roll bonding process. Corros. Eng. Sci. Technol., 2012, 47(1): 19.

[52]

Orłowska M, Ura-Bińczyk E, Olejnik L, Lewandowska M. The effect of grain size and grain boundary misorientation on the corrosion resistance of commercially pure aluminium. Corros. Sci., 2019, 148, 57.

[53]

Meng GZ, Wei LY, Zhang T, Shao YW, Wang FH, Dong CF, Li XG. Effect of microcrystallization on pitting corrosion of pure aluminium. Corros. Sci., 2009, 51(9): 2151.

[54]

Ghosh KS, Gao N, Starink MJ. Characterisation of high pressure torsion processed 7150 Al-Zn-Mg-Cu alloy. Mater. Sci. Eng. A, 2012, 552, 164.

[55]

Song D, Ma AB, Jiang JH, Lin PH, Yang DH, Fan JF. Corrosion behaviour of bulk ultra-fine grained AZ91D magnesium alloy fabricated by equal-channel angular pressing. Corros. Sci., 2011, 53(1): 362.

[56]

Wan YC, Xu SY, Liu CM, Gao YH, Jiang SN, Chen ZY. Enhanced strength and corrosion resistance of Mg-Gd-Y-Zr alloy with ultrafine grains. Mater. Lett., 2018, 213, 274.

[57]

Miyamoto H, Harada K, Mimaki T, Vinogradov A, Hashimoto S. Corrosion of ultra-fine grained copper fabricated by equal-channel angular pressing. Corros. Sci., 2008, 50(5): 1215.

[58]

Yang DS, Dong YC, Chang H, Alexandrov I, Li F, Wang JT, Dan ZH. Corrosion behavior of ultrafine-grained copper processed by equal channel angular pressing in simulated sea water. Mater. Corros., 2018, 69(10): 1455.

[59]

Jang YH, Kim SS, Han SZ, Lim CY, Kim CJ. Corrosion and stress corrosion cracking behavior of equal channel angular pressed oxygen-free copper in 3.5% NaCl solution. J. Mater. Sci., 2006, 41(13): 4293.

[60]

Wang SL, Zhang ZY, Gong YB, Nie GM. Microstructures and corrosion resistance of Fe-based amorphous/nanocrystalline coating fabricated by laser cladding. J. Alloys Compd., 2017, 728, 1116.

[61]

Rai PK, Shekhar S, Mondal K. Development of gradient microstructure in mild steel and grain size dependence of its electrochemical response. Corros. Sci., 2018, 138, 85.

[62]

Williams DE, Newman RC, Song Q, Kelly RG. Passivity breakdown and pitting corrosion of binary alloys. Nature, 1991, 350(6315): 216.

[63]

Abbasi Aghuy A, Zakeri M, Moayed MH, Mazinani M. Effect of grain size on pitting corrosion of 304L austenitic stainless steel. Corros. Sci., 2015, 94, 368.

[64]

Li Y, Zhang T, Wang FH. Effect of microcrystallization on corrosion resistance of AZ91D alloy. Electrochim. Acta, 2006, 51(14): 2845.

[65]

Chung MK, Choi YS, Kim JG, Kim YM, Lee JC. Effect of the number of ECAP pass time on the electrochemical properties of 1050 Al alloys. Mater. Sci. Eng. A, 2004, 366(2): 282.

[66]

Naeini MF, Shariat MH, Eizadjou M. On the chloride-induced pitting of ultra fine grains 5052 aluminum alloy produced by accumulative roll bonding process. J. Alloys Compd., 2011, 509(14): 4696.

[67]

Zhang H, Wang D, Xue P, Wu LH, Ni DR, Ma ZY. Microstructural evolution and pitting corrosion behavior of friction stir welded joint of high nitrogen stainless steel. Mater. Des., 2016, 110, 802.

[68]

Jilani O, Njah N, Ponthiaux P. Transition from inter-granular to pitting corrosion in fine grained aluminum processed by equal channel angular pressing. Corros. Sci., 2014, 87, 259.

[69]

Hamada AS, Karjalainen LP, Somani MC. Electrochemical corrosion behaviour of a novel submicron-grained austenitic stainless steel in an acidic NaCl solution. Mater. Sci. Eng. A, 2006, 431(1–2): 211.

[70]

Meng GZ, Li Y, Wang FH. The corrosion behavior of Fe-10Cr nanocrystalline coating. Electrochim. Acta, 2006, 51(20): 4277.

[71]

Gupta RK, Raman RS, Koch CC, Murty BS. Effect of nanocrystalline structure on the corrosion of a Fe20Cr alloy. Int. J. Electrochem. Sci., 2013, 8, 6791

[72]

Ye W, Li Y, Wang FH. Effects of nanocrystallization on the corrosion behavior of 309 stainless steel. Electrochim. Acta, 2006, 51(21): 4426.

[73]

Pisarek M, Keędzierzawski P, Janik-Czachor M, Kurzydłowski KJ. Effect of hydrostatic extrusion on the corrosion resistance of type 316 stainless steel. Corros., 2008, 64(2): 131.

[74]

Winzer N, Atrens A, Song GL, Ghali E, Dietzel W, Kainer KU, Hort N, Blawert C. A critical review of the stress corrosion cracking (SCC) of magnesium alloys. Adv. Eng. Mater., 2005, 7(8): 659.

[75]

Argade GR, Kumar N, Mishra RS. Stress corrosion cracking susceptibility of ultrafine grained Al-Mg-Sc alloy. Mater. Sci. Eng. A, 2013, 565, 80.

[76]

Argade GR, Yuan W, Kandasamy K, Mishra RS. Stress corrosion cracking susceptibility of ultrafine grained AZ31. J. Mater. Sci., 2012, 47(19): 6812.

[77]

Lu ZM, Shi LM, Zhu SJ, Tang ZD, Jiang YZ. Effect of high energy shot peening pressure on the stress corrosion cracking of the weld joint of 304 austenitic stainless steel. Mater. Sci. Eng. A, 2015, 637, 170.

[78]

Deng Y, Peng B, Xu GF, Pan QL, Ye R, Wang YJ, Lu LY, Yin ZM. Stress corrosion cracking of a high-strength friction-stir-welded joint of an Al-Zn-Mg-Zr alloy containing 0.25 wt.% Sc. Corros. Sci., 2015, 100, 57.

[79]

Sharma MM, Ziemian CW. Pitting and stress corrosion cracking susceptibility of nanostructured Al-Mg alloys in natural and artificial environments. J. Mater. Eng. Perform., 2008, 17(6): 870.

[80]

Wang JT, Zhang YK, Chen JF, Zhou JY, Ge MZ, Lu YL, Li XL. Effects of laser shock peening on stress corrosion behavior of 7075 aluminum alloy laser welded joints. Mater. Sci. Eng. A, 2015, 647, 7.

[81]

Yang Y, Lian XL, Zhou K, Li GJ. Effects of laser shock peening on microstructures and properties of 2195 Al-Li alloy. J. Alloys Compd., 2019, 781, 330.

[82]

Yamasaki T, Miyamoto H, Mimaki T, Vinogradov A, Hashimoto S. Stress corrosion cracking susceptibility of ultra-fine grain copper produced by equal-channel angular pressing. Mater. Sci. Eng. A, 2001, 318(1–2): 122.

[83]

Bai T, Chen P, Guan KS. Evaluation of stress corrosion cracking susceptibility of stainless steel 304L with surface nanocrystallization by small punch test. Mater. Sci. Eng. A, 2013, 561, 498.

[84]

Ghosh S, Kain V. Microstructural changes in AISI 304L stainless steel due to surface machining: Effect on its susceptibility to chloride stress corrosion cracking. J. Nucl. Mater., 2010, 403(1–3): 62.

[85]

Lu JZ, Luo KY, Yang DK, Cheng XN, Hu JL, Dai FZ, Qi H, Zhang L, Zhong JS, Wang QW, Zhang YK. Effects of laser peening on stress corrosion cracking (SCC) of ANSI 304 austenitic stainless steel. Corros. Sci., 2012, 60, 145.

[86]

Wang F, Tian X, Li Q, Li L, Peng X. Oxidation and hot corrosion behavior of sputtered nanocrystalline coating of superalloy K52. Thin Solid Films, 2008, 516(16): 5740.

[87]

Tong ZP, Ren XD, Ren YP, Dai FZ, Ye YX, Zhou WF, Chen L, Ye Z. Effect of laser shock peening on microstructure and hot corrosion of TC11 alloy. Surf. Coat. Technol., 2018, 335, 32.

[88]

Peng X, Yan J, Zhou Y, Wang F. Effect of grain refinement on the resistance of 304 stainless steel to breakaway oxidation in wet air. Acta Mater., 2005, 53(19): 5079.

[89]

Huang Z, Peng X, Xu C, Wang F. Effect of alloy nanocrystallization and Cr distribution on the development of a chromia scale. J. Electrochem. Soc., 2009, 156(3): C95.

[90]

Benafia S, Retraint D, Yapi Brou S, Panicaud B, Grosseau Poussard JL. Influence of Surface Mechanical Attrition Treatment on the oxidation behaviour of 316L stainless steel. Corros. Sci., 2018, 136, 188.

[91]

Peng X. Nanoscale assembly of high-temperature oxidation-resistant nanocomposites. Nanoscale, 2010, 2(2): 262.

[92]

Mahesh BV, Raman RKS. Role of nanostructure in electrochemical corrosion and high temperature oxidation: A review. Metall. Mater. Trans. A, 2014, 45(12): 5799.

[93]

Wang SG, Sun M, Han HB, Long K, Zhang ZD. The high-temperature oxidation of bulk nanocrystalline 304 stainless steel in air. Corros. Sci., 2013, 72, 64.

[94]

Wang YL, Wang Q, Liu HJ, Zeng CL. Effect of grain refinement on the corrosion of Ni-Cr alloys in molten (Li. Na, K)F. Corros. Sci., 2016, 109, 43.

[95]

Wang SG, Sun M, Liu SY, Liu X, Xu YH, Gong CB, Long K, Zhang ZD. Synchronous optimization of strengths, ductility and corrosion resistances of bulk nanocrystalline 304 stainless steel. J. Mater. Sci. Technol., 2020, 37, 161.

[96]

Sotniczuk A, Kuczyńska-Zemła D, Królikowski A, Garbacz H. Enhancement of the corrosion resistance and mechanical properties of nanocrystalline titanium by low-temperature annealing. Corros. Sci., 2019, 147, 342.

[97]

Song D, Ma AB, Jiang JH, Lin PH, Zhang LY. Improvement of pitting corrosion resistance for Al-Cu alloy in sodium chloride solution through equal-channel angular pressing. Prog. Nat. Sci.: Mater. Int., 2011, 21(4): 307.

[98]

Abdulstaar M, Mhaede M, Wagner L, Wollmann M. Corrosion behaviour of Al1050 severely deformed by rotary swaging. Mater. Des., 2014, 57, 325.

[99]

Wei W, Wei KX, Du QB. Corrosion and tensile behaviors of ultra-fine grained Al-Mn alloy produced by accumulative roll bonding. Mater. Sci. Eng. A, 2007, 454–455, 536.

[100]

Ralston KD, Birbilis N, Cavanaugh MK, Weyland M, Muddle BC, Marceau RKW. Role of nanostructure in pitting of Al-Cu-Mg alloys. Electrochim. Acta, 2010, 55(27): 7834.

[101]

Eskandari M, Yeganeh M, Motamedi M. Investigation in the corrosion behaviour of bulk nanocrystalline 316L austenitic stainless steel in NaCl solution. Micro Nano Lett., 2012, 7(4): 380.

[102]

Pu Z, Song GL, Yang S, Outeiro JC, Dillon OW Jr, Puleo DA, Jawahir IS. Grain refined and basal textured surface produced by burnishing for improved corrosion performance of AZ31B Mg alloy. Corros. Sci., 2012, 57, 192.

[103]

Huo WT, Zhang W, Lu JW, Zhang YS. Simultaneously enhanced strength and corrosion resistance of Mg-3Al-1Zn alloy sheets with nano-grained surface layer produced by sliding friction treatment. J. Alloys Compd., 2017, 720, 324.

[104]

Kim HS, Kim WJ. Enhanced corrosion resistance of ultrafine-grained AZ61 alloy containing very fine particles of Mg17Al12 phase. Corros. Sci., 2013, 75, 228.

[105]

Wang XY, Li DY. Mechanical and electrochemical behavior of nanocrystalline surface of 304 stainless steel. Electrochim. Acta, 2002, 47(24): 3939.

[106]

Valiev RZ, Langdon TG. Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater. Sci., 2006, 51(7): 881.

[107]

Song GL, Mishra R, Xu ZQ. Crystallographic orientation and electrochemical activity of AZ31 Mg alloy. Electrochem. Commun., 2010, 12(8): 1009.

[108]

Shahryari A, Szpunar JA, Omanovic S. The influence of crystallographic orientation distribution on 316LVM stainless steel pitting behavior. Corros. Sci., 2009, 51(3): 677.

[109]

Aung NN, Zhou W. Effect of grain size and twins on corrosion behaviour of AZ31B magnesium alloy. Corros. Sci., 2010, 52(2): 589.

[110]

Song D, Ma AB, Jiang JH, Lin PH, Yang DH, Fan JF. Corrosion behavior of equal-channel-angular-pressed pure magnesium in NaCl aqueous solution. Corros. Sci., 2010, 52(2): 481.

[111]

Liu M, Qiu D, Zhao MC, Song GL, Atrens A. The effect of crystallographic orientation on the active corrosion of pure magnesium. Scr. Mater., 2008, 58(5): 421.

[112]

Denkena B, Lucas A. Biocompatible magnesium alloys as absorbable implant materials - Aadjusted surface and subsurface properties by machining processes. CIRP Ann., 2007, 56(1): 113.

[113]

Turnbull A, Mingard K, Lord JD, Roebuck B, Tice DR, Mottershead KJ, Fairweather ND, Bradbury AK. Sensitivity of stress corrosion cracking of stainless steel to surface machining and grinding procedure. Corros. Sci., 2011, 53(10): 3398.

[114]

Song D, Ma AB, Jiang JH, Lin PH, Yang DH. Corrosion behavior of ultra-fine grained industrial pure Al fabricated by ECAP. Trans. Nonferrous Met. Soc. China, 2009, 19(5): 1065.

[115]

Brunner JG, May J, Höppel HW, Göken M, Virtanen S. Localized corrosion of ultrafine-grained Al-Mg model alloys. Electrochim. Acta, 2010, 55(6): 1966.

[116]

Korchef A, Kahoul A. Corrosion behavior of commercial aluminum alloy processed by equal channel angular pressing. Int. J. Corros., 2013, 2013, 1.

AI Summary AI Mindmap
PDF

152

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/