Effect of Al2O3 content on the viscosity and structure of CaO-SiO2-Cr2O3-Al2O3 slags

Fang Yuan , Zheng Zhao , Yanling Zhang , Tuo Wu

International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (8) : 1522 -1531.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (8) : 1522 -1531. DOI: 10.1007/s12613-021-2306-2
Article

Effect of Al2O3 content on the viscosity and structure of CaO-SiO2-Cr2O3-Al2O3 slags

Author information +
History +
PDF

Abstract

The effect of Al2O3 content on the viscosity and structure of CaO-SiO2-Cr2O3-Al2O3 slags was investigated to facilitate recycling of Cr in steelmaking slags. The slags exhibit good Newtonian behavior at high temperature. The viscosity of acidic slag first increases from 0.825 to 1.141 Pa·s as the Al2O3 content increases from 0 to 10wt% and then decreases to 1.071 Pa·s as the Al2O3 content increases further to 15wt%. The viscosity of basic slag first increases from 0.084 to 0.158 Pa·s as the Al2O3 content increases from 0 to 15wt% and then decreases to 0.135 Pa·s as the Al2O3 content increases further to 20wt%. Furthermore, Cr2O3-containing slag requires less Al2O3 to reach the maximum viscosity than Cr2O3-free slag; the Al2O3 contents at which the behavior changes are 10wt% and 15wt% for acidic and basic slags, respectively. The activation energy of the slags is consistent with the viscosity results. Raman spectra demonstrate that [AlO4] tetrahedra appear initially and were replaced by [AlO6] octahedra with further addition of Al2O3. The dissolved organic phosphorus content of the slag first increases and then decreases with increasing Al2O3 content, which is consistent with the viscosity and Raman results.

Keywords

viscosity / structure / Cr-containing slag / Raman spectra

Cite this article

Download citation ▾
Fang Yuan, Zheng Zhao, Yanling Zhang, Tuo Wu. Effect of Al2O3 content on the viscosity and structure of CaO-SiO2-Cr2O3-Al2O3 slags. International Journal of Minerals, Metallurgy, and Materials, 2022, 29(8): 1522-1531 DOI:10.1007/s12613-021-2306-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Miyamoto KI, Kato K, Yuki T. Effect of slag properties on reduction rate of chromium oxide in Cr2O3 containing slag by carbon in steel. Tetsu-to-Hagane, 2002, 88(12): 838.

[2]

Zeng XT, Yuan CH, Xu H, Han JX, Tian Y. Development status quo of the world chromite resources and investment suggestion. China Min., 2015, 24(8): 16

[3]

Kekkonen M, Oghbasilasie H, Louhenkilpi S. Viscosity Models for Molten Slags, 2012, Helsinki, Aalto University publication series

[4]

Wang LJ, Seetharaman S. Experimental studies on the oxidation states of chromium oxides in slag systems. Metall. Mater. Trans. B, 2010, 41(5): 946.

[5]

Eisenhüttenleute VD. Slag Atlas, 1995, 2nd ed. Düsseldorf, Verlag Stahleisen GmbH

[6]

Minami E, Amatatsu M, Sano N. Viscosity measurement of slag containing chromium oxide. Tetsu-to-Hagane, 1987, 73, S871

[7]

Qiu GB, Chen L, Zhu JY, Lv XW, Bai CG. Effect of Cr2O3 addition on viscosity and structure of Ti-bearing blast furnace slag. ISIJ Int., 2015, 55(7): 1367.

[8]

Xu C, Wang WL, Zhou LJ, Xie SL, Zhang C. The effects of Cr2O3 on the melting, viscosity, heat transfer, and crystallization behaviors of mold flux used for the casting of Cr-bearing alloy steels. Metall. Mater. Trans. B, 2015, 46(2): 882.

[9]

Huang WJ, Zhao YH, Yu S, Zhang LX, Ye ZC, Wang N, Chen M. Viscosity property and structure analysis of FeO-SiO2-V2O3-TiO2-Cr2O3 slags. ISIJ Int., 2016, 56(4): 594.

[10]

R.Z. Xu, J.L. Zhang, Z.Y. Wang, and K.X. Jiao, Influence of Cr2O3 and B2O3 on viscosity and structure of high alumina slag, Steel Res. Int., 88(2017), No. 4, art. No. 1600241.

[11]

Li QH, Gao JT, Zhang YL, An ZQ, Guo ZC. Viscosity measurement and structure analysis of Cr2O3-bearing CaO-SiO2-MgO-Al2O3 slags. Metall. Mater. Trans. B, 2017, 48(1): 346.

[12]

L. Forsbacka, and L. Holappa, Viscosity of SiO2-CaO-CrOx slags in contact with metallic chromium and application of the Iida model, [in] VII International Conference on Molten Slags, Fluxes and Salts, Johannesburg, 2004, p. 129.

[13]

Forsbacka L, Holappa L, Kondratiev A, Jak E. Experimental study and modelling of viscosity of chromium containing slags. Steel Res. Int., 2007, 78(9): 676.

[14]

Forsbacka L, Holappa L. Viscosity of CaO-CrOx-SiO2 slags in a relatively high oxygen partial pressure atmosphere. Scand. J. Metall., 2004, 33(5): 676.

[15]

Mills KC, Yuan L, Li Z, Zhang GH, Chou KC. A review of the factors affecting the thermophysical properties of silicate slags. High Temp. Mater. Processes, 2012, 31(4–5): 301.

[16]

Yuan F, Zhao Z, Zhang YL, Gao JT, Wu T. Viscosity measurements of CrO-bearing CaO-SiO2-5%Al2O3-CrO slag equilibrating with metallic Cr. ISIJ Int., 2020, 60(3): 613.

[17]

Wu T, Zhang YL, Yuan F, An ZQ. Effects of the Cr2O3 content on the viscosity of CaO-SiO2-10Pct Al2O3-Cr2O3 quaternary slag. Metall. Mater. Trans. B, 2018, 49(4): 1719.

[18]

Park JH, Kim H, Min DJ. Novel approach to link between viscosity and structure of silicate melts via Darken’s excess stability function: Focus on the amphoteric behavior of alumina. Metall. Mater. Trans. B, 2008, 39(1): 150.

[19]

Park JH, Min DJ, Song HS. Amphoteric behavior of alumina in viscous flow and structure of CaO-SiO2 (−MgO) −Al2O3 slags. Metall. Mater. Trans. B, 2004, 35(2): 269.

[20]

Shahbazian F, Du SC, Seetharaman S. The effect of addition of Al2O3 on the viscosity of CaO-FeO-SiO2-CaF2 slags. ISIJ Int., 2002, 42(2): 155.

[21]

Park HS, Park SS, Sohn I. The viscous behavior of FeOt-Al2O3-SiO2 copper smelting slags. Metall. Mater. Trans. B, 2011, 42(4): 692.

[22]

Mysen BO, Virgo D, Scarfe CM. Relations between the anionic structure and viscosity of silicate melts—A Raman spectroscopic study. Am. Mineral., 1980, 65(7–8): 690

[23]

McMillan P. A Raman spectroscopic study of glasses in the system CaO-MgO-SiO2. Am. Mineral., 1984, 69(7–8): 645

[24]

Neuville DR, Cormier L, Massiot D. Al coordination and speciation in calcium aluminosilicate glasses: Effects of composition determined by 27Al MQ-MAS NMR and Raman spectroscopy. Chem. Geol., 2006, 229(1–3): 173.

[25]

Sohn I, Min DJ. A review of the relationship between viscosity and the structure of calcium-silicate-based slags in iron-making. Steel Res. Int., 2012, 83(7): 611.

[26]

Xu CY, Wang C, Xu RZ, Zhang JL, Jiao KX. Effect of Al2O3 on the viscosity of CaO-SiO2-Al2O3-MgO-Cr2O3 slags. Int. J. Miner. Metall. Mater., 2021, 28(5): 797.

[27]

Gu KZ, Wang WL, Wei J, Matsuura H, Tsukihashi F, Sohn I, Min DJ. Heat-transfer phenomena across mold flux by using the inferred emitter technique. Metall. Mater. Trans. B, 2012, 43(6): 1393.

[28]

Forsbacka L, Holappa L, Iida T, Kita Y, Toda Y. Experimental study of viscosities of selected CaO-MgO-Al2O3-SiO2 slags and application of the Iida model. Scand. J. Metall., 2003, 32(5): 273.

[29]

Kim JR, Lee YS, Min DJ, Jung SM, Yi SH. Influence of MgO and Al2O3 contents on viscosity of blast furnace type slags containing FeO. ISIJ Int., 2004, 44(8): 1291.

[30]

Cheng YB, Xu C, Pan SY, Xia YF, Liu RC, Wang SX. An investigation of the structural effects of Fe3+ in the alkali-silicate glasses. J. Non-Cryst. Solids, 1986, 80(1–3): 201

[31]

Forsbacka L. Experiences in Slag Viscosity Measurement by Rotation Cylinder Method, 2015, Helsinki, Helsinki University of Technology

[32]

Chen M, Raghunath S, Zhao BJ. Viscosity of SiO2-FeO-Al2O3 system in equilibrium with metallic Fe. Metall. Mater. Trans. B, 2013, 44(4): 820.

[33]

Park JH. Composition-structure-property relationships of CaO-MO-SiO2 (M = Mg2+, Mn2+) systems derived from micro-Raman spectroscopy. J. Non Cryst. Solids, 2012, 358(23): 3096.

[34]

Kalicka Z, Kawecka-Cebula E, Pytel K. Application of the Iida model for estimation of slag viscosity for Al2O3-Cr2O3-CaO-CaF2 systems. Arch. Metall. Mater., 2009, 54(1): 179

[35]

JF, Jin ZN, Yang HY, Tong LL, Chen GB, Xiao FX. Effect of the CaO/SiO2 mass ratio and FeO content on the viscosity of CaO-SiO2-FeO-12wt%ZnO-3wt%Al2O3 slags. Int. J. Miner. Metall. Mater., 2017, 24(7): 756.

[36]

Shi CB, Zheng DL, Shin SH, Li J, Cho JW. Effect of TiO2 on the viscosity and structure of low-fluoride slag used for electroslag remelting of Ti-containing steels. Int. J. Miner. Metall. Mater., 2017, 24(1): 18.

[37]

Machin JS, Yee TB, Hanna DL. Viscosity studies of system CaO-MgO-Al2O3-SiO2: III, 35, 45, and 50% SiO2. J. Am. Ceram. Soc., 1952, 35(12): 322.

[38]

Arrhenius S. The viscosity of aqueous mixture. Z. Phys. Chem., 1887, 1, 285.

[39]

Mills KC. The influence of structure on the physico-chemical properties of slags. ISIJ Int., 1993, 33(1): 148.

[40]

Jiang GC, You JL. High temperature Raman spectroscopy used in the study of microstructure of silicate melts. J. Chin. Ceram. Soc., 2003, 31(10): 998

[41]

Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A, 1976, 32(5): 751.

[42]

Kim TS, Park JH. Structure-viscosity relationship of low-silica calcium aluminosilicate melts. ISIJ Int., 2014, 54(9): 2031.

[43]

Wang LJ, Wang YX, Wang Q, Chou K. Raman structure investigations of CaO-MgO-Al2O3-SiO2-CrOx and its correlation with sulfide capacity. Metall. Mater. Trans. B, 2016, 47(1): 10.

[44]

Dines TJ, Inglis S. Raman spectroscopic study of supported chromium(VI) oxide catalysts. Phys. Chem. Chem. Phys., 2003, 5(6): 1320.

[45]

Yang JJ, Cheng HF, Martens WN, Frost RL. Transition of synthetic chromium oxide gel to crystalline chromium oxide: A hot-stage Raman spectroscopic study. J. Raman Spectrosc., 2011, 42(5): 1069.

[46]

Frantza JD, Mysen BO. Raman spectra and structure of BaO-SiO2-SrO-SiO2 and CaO-SiO2 melts to 1600°C. Chem. Geol., 1995, 121(1–4): 155.

[47]

Mysen BO, Frantz JD. Structure of silicate melts at high temperature: In-situ measurements in the system BaO-SiO2 to 1669°C. Am. Mineral., 1993, 78(7–8): 699

[48]

Y.Q. Wu, G.C. Jiang, J.L. You, H.Y. Hou, and H. Chen, Raman scattering coefficients of symmetrical stretching modes of microstructural units in sodium silicate melts, Acta Phys. Sin., 54(2005), No. 2, art. No. 961.

[49]

Mysen BO, Frantz JD. Silicate melts at magmatic temperatures: In-situ structure determination to 1651°C and effect of temperature and bulk composition on the mixing behavior of structural units. Contrib. Mineral. Petrol., 1994, 117(1): 1.

[50]

Stebbins JF. Effects of temperature and composition on silicate glass structure and dynamics: SI-29 NMR results. J. NonCryst. Solids, 1988, 106(1–3): 359.

[51]

You JL, Jiang GC, Xu KD. High temperature Raman spectra of sodium disilicate crystal, glass and its liquid. J. NonCryst. Solids, 2001, 282(1): 125.

AI Summary AI Mindmap
PDF

131

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/