Chemical vapor deposition growth behavior of graphene

Jie Wang , Tengfei Fan , Jianchen Lu , Xiaoming Cai , Lei Gao , Jinming Cai

International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (1) : 136 -143.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (1) : 136 -143. DOI: 10.1007/s12613-021-2302-6
Article

Chemical vapor deposition growth behavior of graphene

Author information +
History +
PDF

Abstract

The optimized growth parameters of graphene with different morphologies, such as dendrites, rectangle, and hexagon, have been obtained by low-pressure chemical vapor deposition on polycrystalline copper substrates. The evolution of fractal graphene, which grew on the polycrystalline copper substrate, has also been observed. When the equilibrium growth state of graphene is disrupted, its intrinsic hexagonal symmetry structure will change into a non-hexagonal symmetry structure. Then, we present a systematic and comprehensive study of the evolution of graphene with different morphologies grown on solid copper as a function of the volume ratio of methane to hydrogen in a controllable manner. Moreover, the phenomena of stitching snow-like graphene together and stacking graphene with different angles was also observed.

Keywords

graphene / chemical vapor deposition / various morphologies / dendrites / methane

Cite this article

Download citation ▾
Jie Wang, Tengfei Fan, Jianchen Lu, Xiaoming Cai, Lei Gao, Jinming Cai. Chemical vapor deposition growth behavior of graphene. International Journal of Minerals, Metallurgy, and Materials, 2022, 29(1): 136-143 DOI:10.1007/s12613-021-2302-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666.

[2]

Yan Z, Lin J, Peng ZW, Sun ZZ, Zhu Y, Li L, Xiang CS, Samuel EL, Kittrell C, Tour JM. Toward the synthesis of wafer-scale single-crystal graphene on copper foils. ACS Nano, 2012, 6(10): 9110.

[3]

Sun JY, Zhang YF, Liu ZF. Direct chemical vapor deposition growth of graphene on insulating substrates. Chem-Nano Mat, 2016, 2(1): 9

[4]

Zeng XF, Wang JS, Zhao YN, Zhang WL, Wang MH. Construction of TiO2-pillared multilayer graphene nanocomposites as efficient photocatalysts for ciprofloxacin degradation. Int. J. Miner. Metall. Mater., 2021, 28(3): 503.

[5]

Huang B, Clark G, Navarro-Moratalla E, Klein DR, Cheng R, Seyler KL, Zhong D, Schmidgall E, McGuire MA, Cobden DH, Yao W, Xiao D, Jarillo-Herrero P, Xu XD. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature, 2017, 546(7657): 270.

[6]

Kato R, Minami S, Koga Y, Hasegawa M. High growth rate chemical vapor deposition of graphene under low pressure by RF plasma assistance. Carbon, 2016, 96, 1008.

[7]

Yu QK, Jauregui LA, Wu W, Colby R, Tian JF, Su ZH, Cao HL, Liu ZH, Pandey D, Wei DG, Chung TF, Peng P, Guisinger NP, Stach EA, Bao JM, Pei SS, Chen YP. Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nat. Mater., 2011, 10(6): 443.

[8]

Ding GQ, Zhu Y, Wang SM, Gong Q, Sun L, Wu TR, Xie XM, Jiang MH. Chemical vapor deposition of graphene on liquid metal catalysts. Carbon, 2013, 53, 321.

[9]

Geng DC, Meng L, Chen BY, Gao EL, Yan W, Yan H, Luo BR, Xu J, Wang HP, Mao ZP, Xu ZP, He L, Zhang ZY, Peng LM, Yu G. Controlled growth of single-crystal twelve-pointed graphene grains on a liquid Cu surface. Adv. Mater., 2014, 26(37): 6423.

[10]

Cai ZY, Liu BL, Zou XL, Cheng HM. Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chem. Rev., 2018, 118(13): 6091.

[11]

Luo BR, Gao EL, Geng DC, Wang HP, Xu ZP, Yu G. Etching-controlled growth of graphene by chemical vapor deposition. Chem. Mater., 2017, 29(3): 1022.

[12]

Chen S, Gao JF, Srinivasan BM, Zhang G, Sorkin V, Hariharaputran R, Zhang YW. A kinetic Monte Carlo model for the growth and etching of graphene during chemical vapor deposition. Carbon, 2019, 146, 399.

[13]

S. Chen, J.F. Gao, B.M. Srinivasan, G. Zhang, V. Sorkin, R. Hariharaputran, and Y.W. Zhang, Unveiling the competitive role of etching in graphene growth during chemical vapor deposition, 2D Mater., 6(2018), No. 1, art. No. 015031.

[14]

Liu JW, Wu J, Edwards CM, Berrie CL, Moore D, Chen ZJ, Maroni VA, Paranthaman MP, Goyal A. Triangular graphene grain growth on cube-textured Cu substrates. Adv. Funct. Mater., 2011, 21(20): 3868.

[15]

Ago H, Tanaka I, Orofeo CM, Tsuji M, Ikeda KI. Patterned growth of graphene over epitaxial catalyst. Small, 2010, 6(11): 1226.

[16]

Wang H, Wang GZ, Bao PF, Yang SL, Zhu W, Xie X, Zhang WJ. Controllable synthesis of submillimeter single-crystal monolayer graphene domains on copper foils by suppressing nucleation. J. Am. Chem. Soc., 2012, 134(8): 3627.

[17]

Li XS, Magnuson CW, Venugopal A, An J, Suk JW, Han BY, Borysiak M, Cai WW, Velamakanni A, Zhu YW, Fu LF, Vogel EM, Voelkl E, Colombo L, Ruoff RS. Graphene films with large domain size by a two-step chemical vapor deposition process. Nano Lett., 2010, 10(11): 4328.

[18]

Wofford JM, Nie S, McCarty KF, Bartelt NC, Dubon OD. Graphene islands on Cu foils: The interplay between shape, orientation, and defects. Nano Lett., 2010, 10(12): 4890.

[19]

Li XS, Magnuson CW, Venugopal A, Tromp RM, Hannon JB, Vogel EM, Colombo L, Ruoff RS. Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper. J. Am. Chem. Soc., 2011, 133(9): 2816.

[20]

George A, Mathew S, van Gastel R, Nijland M, Gopinadhan K, Brinks P, Venkatesan T, ten Elshof JE. Large area resist-free soft lithographic patterning of graphene. Small, 2013, 9(5): 711.

[21]

M. Pan, C. Wang, H.F. Li, N. Xie, P. Wu, X.D. Wang, Z.L. Zeng, S.G. Deng, and G.P. Dai, Growth of U-shaped graphene domains on copper foil by chemical vapor deposition, Materials, 12(2019), No. 12, art. No. 1887.

[22]

X. Xin, Z.Y. Fei, T. Ma, L. Chen, M.L. Chen, C. Xu, X.T. Qian, D.M. Sun, X.L. Ma, H.M. Cheng, and W.C. Ren, Circular graphene platelets with grain size and orientation gradients grown by chemical vapor deposition, Adv. Mater., 29(2017), No. 16, art. No. 1605451.

[23]

Geng DC, Wu B, Guo YL, Luo BR, Xue YZ, Chen JY, Yu G, Liu YQ. Fractal etching of graphene. J. Am. Chem. Soc., 2013, 135(17): 6431.

[24]

B.R. Luo, S. Yang, A.H. Yuan, B. Zhang, D.J. Li, P. Bøggild, and T.J. Booth, Selective area oxidation of copper derived from chemical vapor deposited graphene microstructure, Nanotechnology, 31(2020), No. 48, art. No. 485603.

[25]

He WZ, Geng DC, Xu ZP. Pattern evolution characterizes the mechanism and efficiency of CVD graphene growth. Carbon, 2019, 141, 316.

[26]

Nanayakkara TR, Wijewardena UK, Withanage SM, Kriisa A, Samaraweera RL, Mani RG. Strain relaxation in different shapes of single crystal graphene grown by chemical vapor deposition on copper. Carbon, 2020, 168, 684.

[27]

Z.L. Chen, Y. Qi, X.D. Chen, Y.F. Zhang, and Z.F. Liu, Direct CVD growth of graphene on traditional glass: Methods and mechanisms, Adv. Mater., 31(2019), No. 9, art. No. 1803639.

[28]

Wu TR, Ding GQ, Shen HL, Wang HM, Sun L, Jiang D, Xie XM, Jiang MH. Triggering the continuous growth of graphene toward millimeter-sized grains. Adv. Funct. Mater., 2013, 23(2): 198.

[29]

Ju BY, Yang WS, Zhang Q, Hussain M, Xiu ZY, Qiao J, Wu GH. Research progress on the characterization and repair of graphene defects. Int. J. Miner. Metall. Mater., 2020, 27(9): 1179.

[30]

Vlassiouk I, Regmi M, Fulvio P, Dai S, Datskos P, Eres G, Smirnov S. Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene. ACS Nano, 2011, 5(7): 6069.

[31]

Zhao P, Cheng Y, Zhao DC, Yin K, Zhang XW, Song M, Yin SQ, Song YN, Wang P, Wang M, Xia Y, Wang HT. The role of hydrogen in oxygen-assisted chemical vapor deposition growth of millimeter-sized graphene single crystals. Nanoscale, 2016, 8(14): 7646.

[32]

Shi YG, Hao Y, Wang D, Zhang JC, Zhang P, Shi XF, Han D, Chai Z, Yan JD. Effects of the flow rate of hydrogen on the growth of graphene. Int. J. Miner. Metall. Mater., 2015, 22(1): 102.

[33]

Chen TX, Zhou YQ, Sheng YW, Wang XC, Zhou S, Warner JH. Hydrogen-assisted growth of large-area continuous films of MoS2 on monolayer graphene. ACS Appl. Mater. Interfaces, 2018, 10(8): 7304.

[34]

S. Chen, J.F. Gao, B.M. Srinivasan, G. Zhang, V. Sorkin, R. Hariharaputran, and Y.W. Zhang, An all-atom kinetic Monte Carlo model for chemical vapor deposition growth of graphene on Cu(111) substrate, J. Phys.: Condens. Matter, 32(2020), No. 15, art. No. 155401.

[35]

Liu QF, Gong YP, Wilt JS, Sakidja R, Wu J. Synchronous growth of AB-stacked bilayer graphene on Cu by simply controlling hydrogen pressure in CVD process. Carbon, 2015, 93, 199.

[36]

Qi ZK, Shi HH, Zhao MX, Jin HC, Jin S, Kong XH, Ruoff RS, Qin SY, Xue JM, Ji HX. Chemical vapor deposition growth of bernal-stacked bilayer graphene by edge-selective etching with H2O. Chem. Mater., 2018, 30(21): 7852.

[37]

Liu MX, Zhang YF, Chen YB, Gao YB, Gao T, Ma DL, Ji QQ, Zhang Y, Li C, Liu ZF. Thinning segregated graphene layers on high carbon solubility substrates of rhodium foils by tuning the quenching process. ACS Nano, 2012, 6(12): 10581.

[38]

Yang W, Chen GR, Shi ZW, Liu CC, Zhang LC, Xie GB, Cheng M, Wang DM, Yang R, Shi DX, Watanabe K, Taniguchi T, Yao YG, Zhang YB, Zhang GY. Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat. Mater., 2013, 12(9): 792.

[39]

Nguyen VL, Shin BG, Duong DL, Kim ST, Perello D, Lim YJ, Yuan QH, Ding F, Jeong HY, Shin HS, Lee SM, Chae SH, Vu QA, Lee SH, Lee YH. Seamless stitching of graphene domains on polished copper (111) foil. Adv. Mater., 2015, 27(8): 1376.

[40]

Luo BR, Chen BY, Meng L, Geng DC, Liu HT, Xu J, Zhang ZY, Zhang HT, Peng LM, He L, Hu WP, Liu YQ, Yu G. Layer-stacking growth and electrical transport of hierarchical graphene architectures. Adv. Mater., 2014, 26(20): 3218.

AI Summary AI Mindmap
PDF

127

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/