Chemical vapor deposition growth behavior of graphene
Jie Wang , Tengfei Fan , Jianchen Lu , Xiaoming Cai , Lei Gao , Jinming Cai
International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (1) : 136 -143.
Chemical vapor deposition growth behavior of graphene
The optimized growth parameters of graphene with different morphologies, such as dendrites, rectangle, and hexagon, have been obtained by low-pressure chemical vapor deposition on polycrystalline copper substrates. The evolution of fractal graphene, which grew on the polycrystalline copper substrate, has also been observed. When the equilibrium growth state of graphene is disrupted, its intrinsic hexagonal symmetry structure will change into a non-hexagonal symmetry structure. Then, we present a systematic and comprehensive study of the evolution of graphene with different morphologies grown on solid copper as a function of the volume ratio of methane to hydrogen in a controllable manner. Moreover, the phenomena of stitching snow-like graphene together and stacking graphene with different angles was also observed.
graphene / chemical vapor deposition / various morphologies / dendrites / methane
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
S. Chen, J.F. Gao, B.M. Srinivasan, G. Zhang, V. Sorkin, R. Hariharaputran, and Y.W. Zhang, Unveiling the competitive role of etching in graphene growth during chemical vapor deposition, 2D Mater., 6(2018), No. 1, art. No. 015031. |
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
M. Pan, C. Wang, H.F. Li, N. Xie, P. Wu, X.D. Wang, Z.L. Zeng, S.G. Deng, and G.P. Dai, Growth of U-shaped graphene domains on copper foil by chemical vapor deposition, Materials, 12(2019), No. 12, art. No. 1887. |
| [22] |
X. Xin, Z.Y. Fei, T. Ma, L. Chen, M.L. Chen, C. Xu, X.T. Qian, D.M. Sun, X.L. Ma, H.M. Cheng, and W.C. Ren, Circular graphene platelets with grain size and orientation gradients grown by chemical vapor deposition, Adv. Mater., 29(2017), No. 16, art. No. 1605451. |
| [23] |
|
| [24] |
B.R. Luo, S. Yang, A.H. Yuan, B. Zhang, D.J. Li, P. Bøggild, and T.J. Booth, Selective area oxidation of copper derived from chemical vapor deposited graphene microstructure, Nanotechnology, 31(2020), No. 48, art. No. 485603. |
| [25] |
|
| [26] |
|
| [27] |
Z.L. Chen, Y. Qi, X.D. Chen, Y.F. Zhang, and Z.F. Liu, Direct CVD growth of graphene on traditional glass: Methods and mechanisms, Adv. Mater., 31(2019), No. 9, art. No. 1803639. |
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
S. Chen, J.F. Gao, B.M. Srinivasan, G. Zhang, V. Sorkin, R. Hariharaputran, and Y.W. Zhang, An all-atom kinetic Monte Carlo model for chemical vapor deposition growth of graphene on Cu(111) substrate, J. Phys.: Condens. Matter, 32(2020), No. 15, art. No. 155401. |
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
/
| 〈 |
|
〉 |