Effect of particle micro-structure on the electrochemical properties of LiNi0.8Co0.1Mn0.1O2 cathode material

Zexun Tang , Hongqi Ye , Xin Ma , Kai Han

International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (8) : 1618 -1626.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2022, Vol. 29 ›› Issue (8) : 1618 -1626. DOI: 10.1007/s12613-021-2296-0
Article

Effect of particle micro-structure on the electrochemical properties of LiNi0.8Co0.1Mn0.1O2 cathode material

Author information +
History +
PDF

Abstract

Ni-rich layered material is a kind of high-capacity cathode to meet the requirement of electric vehicles. As for the typical LiNi0.8Co0.1Mn0.1O2 material, the particle formation is significant for electrochemical properties of the cathode. In this work, the structure, morphology, and electrochemical performance of LiNi0.8Co0.1Mn0.1O2 secondary particles and single crystals were systematically studied. A lower Ni2+/Ni3+ molar ratio of 0.66 and a lower residual alkali content of 0.228wt% were achieved on the surface of the single crystals. In addition, the single crystals showed a discharge capacity of 191.6 mAh/g at 0.2 C (∼12 mAh/g lower than that of the secondary particles) and enhanced the electrochemical stability, especially when cycled at 50°C and in a wider electrochemical window (between 3.0 and 4.4 V vs. Li+/Li). The LiNi0.8Co0.1Mn0.1O2 secondary particles were suitable for applications requiring high specific capacity, whereas single crystals exhibited better stability, indicating that they are more suitable for use in long life requested devices.

Keywords

Ni-rich layered materials / single crystal / cathode / micro-structure / lithium-ion battery

Cite this article

Download citation ▾
Zexun Tang, Hongqi Ye, Xin Ma, Kai Han. Effect of particle micro-structure on the electrochemical properties of LiNi0.8Co0.1Mn0.1O2 cathode material. International Journal of Minerals, Metallurgy, and Materials, 2022, 29(8): 1618-1626 DOI:10.1007/s12613-021-2296-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Noh HJ, Youn S, Yoon CS, Sun YK. Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. J. Power Sources, 2013, 233, 121.

[2]

Goodenough JB, Kim Y. Challenges for rechargeable Li batteries. Chem. Mater., 2010, 22(3): 587.

[3]

Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D. Challenges in the development of advanced Li-ion batteries: A review. Energy Environ. Sci., 2011, 4(9): 3243.

[4]

Ran QW, Zhao HY, Wang Q, Shu XH, Hu YZ, Hao S, Wang M, Liu JT, Zhang ML, Li H, Liu NY, Liu XQ. Dual functions of gradient phosphate polyanion doping on improving the electrochemical performance of Ni-rich LiNi0.6Co0.2Mn0.2O2 cathode at high cut-off voltage and high temperature. Electrochim. Acta, 2019, 299, 971.

[5]

Li SY, Fu XL, Liang YW, Wang SX, Zhou XA, Dong H, Tuo KY, Gao CK, Cui XL. Enhanced structural stability of boron-doped Layered@Spinel@Carbon heterostructured lithium-rich manganese-based cathode materials. ACS Sustainable Chem. Eng., 2020, 8(25): 9311.

[6]

Deng LZ, Wu F, Gao XG, Wu WP. Development of a LiFePO4-based high power lithium secondary battery for HEVs applications. Rare Met., 2020, 39(12): 1457.

[7]

Zhao HY, Gao XY, Li YF, Ran QW, Fu CG, Feng YP, Liu JT, Liu XQ, Su JX. Synergistic effects of zinc-doping and nano-rod morphology on enhancing the electrochemical properties of spinel Li-Mn-O material. Ceram. Int., 2019, 45(14): 17591.

[8]

Li S, Zhou HY, Wang ZM, Deng JQ, Yao QR. Structure and electrochemical properties of La1−xMgxNi2.8Co0.4Mn0.1Al0.2 (x = 0.25, 0.30, 0.33) hydrogen storage alloys. Rare Met., 2020, 39(12): 1464.

[9]

Ran QW, Zhao HY, Shu XH, Hu YZ, Hao S, Shen QQ, Liu W, Liu JT, Zhang ML, Li H, Liu XQ. Enhancing the electrochemical performance of Ni-rich layered oxide cathodes by combination of the gradient doping and dual-conductive layers coating. ACS Appl. Energy Mater., 2019, 2(5): 3120.

[10]

Nitta N, Wu FX, Lee JT, Yushin G. Li-ion battery materials: Present and future. Mater. Today, 2015, 18(5): 252.

[11]

Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM. Li-O2 and Li-S batteries with high energy storage. Nat. Mater., 2012, 11(1): 19.

[12]

Kim JH, Park KJ, Kim SJ, Yoon CS, Sun YK. A method of increasing the energy density of layered Ni-rich Li[Ni1−2xCoxMnx]O2 cathodes (x = 0.05, 0.1, 0.2). J. Mater. Chem. A, 2019, 7(6): 2694.

[13]

Yoon CS, Choi MH, Lim BB, Lee EJ, Sun YK. Review—High-capacity Li[Ni1−xCox/2Mn x/2]O2 (x = 0.1, 0.05, 0) cathodes for next-generation Li-ion battery. J. Electrochem. Soc., 2015, 162(14): A2483.

[14]

Q.W. Ran, H.Y. Zhao, Y.Z. Hu, S. Hao, J.T. Liu, H. Li, and X.Q. Liu, Enhancing surface stability of LiNi0.8Co0.1Mn0.1O2 cathode with hybrid core-shell nanostructure induced by high-valent titanium ions for Li-ion batteries at high cut-off voltage, J. Alloys Compd., 834(2020), art. No. 155099.

[15]

Ran QW, Zhao HY, Hu YZ, Hao S, Shen QQ, Liu JT, Li H, Xiao Y, Li L, Wang LP, Liu XQ. Multifunctional integration of double-shell hybrid nanostructure for alleviating surface degradation of LiNi0.8Co0.1Mn0.1O2 cathode for advanced lithium-ion batteries at high cutoff voltage. ACS Appl. Mater. Interfaces, 2020, 12(8): 9268.

[16]

Tang WJ, Chen ZX, Xiong F, Chen F, Huang C, Gao Q, Wang TZ, Yang ZH, Zhang WX. An effective etching-induced coating strategy to shield LiNi0.8Co0.1Mn0.1O2 electrode materials by LiAlO2. J. Power Sources, 2019, 412, 246.

[17]

Xiong F, Chen ZX, Huang C, Wang TZ, Zhang WX, Yang ZH, Chen F. Near-equilibrium control of Li2TiO3 nano-scale layer coated on LiNi0.8Co0.1Mn0.1O2 cathode materials for enhanced electrochemical performance. Inorg. Chem., 2019, 58(22): 15498.

[18]

Makimura Y, Sasaki T, Nonaka T, Nishimura YF, Uyama T, Okuda C, Itou Y, Takeuchi Y. Factors affecting cycling life of LiNi0.8Co0.15Al0.05O2 for lithium-ion batteries. Mater. Chem. A, 2016, 4(21): 8350.

[19]

Woo SG, Kim JH, Kim HR, Cho W, Yu JS. Failure mechanism analysis of LiNi0.88Co0.09Mn0.03O2 cathodes in Li-ion full cells. J. Electroanal. Chem., 2017, 799, 315.

[20]

Iqbal A, Chen L, Chen Y, Gao YX, Chen F, Li DC. Lithium-ion full cell with high energy density using nickel-rich LiNi0.8Co0.1Mn0.1O2 cathode and SiO-C composite anode. Int. J. Miner. Metall. Mater., 2018, 25(12): 1473.

[21]

Li WD, Asl HY, Xie Q, Manthiram A. Collapse of LiNi1−xyCoxMnyO2 lattice at deep charge irrespective of nickel content in lithium-ion batteries. J. Am. Chem. Soc., 2019, 141(13): 5097.

[22]

J.M. Lim, T. Hwang, D. Kim, M.S. Park, K. Cho, and M. Cho, Intrinsic origins of crack generation in Ni-rich LiNi0.8Co0.1Mn0.1O2 layered oxide cathode material, Sci. Rep., 7(2017), art. No. 39669.

[23]

Kondrakov AO, Geßwein H, Galdina K, de Biasi L, Meded V, Filatova EO, Schumacher G, Wenzel W, Hartmann P, Brezesinski T, Janek J. Charge-transfer-induced lattice collapse in Ni-rich NCM cathode materials during delithiation. J. Phys. Chem. C, 2017, 121(44): 24381.

[24]

X. Xu, H. Huo, J.Y. Jian, L.G. Wang, H. Zhu, S. Xu, X.S. He, G.P. Yin, C.Y. Du, and X.L. Sun, Radially oriented single-crystal primary nanosheets enable ultrahigh rate and cycling properties of LiNi0.8Co0.1Mn0.1O2 cathode material for lithium-ion batteries, Adv. Energy Mater., 9(2019), No. 15, art. No. 1803963.

[25]

Li JL, Yao RM, Cao CB. LiNi1/3Co1/3Mn1/3O2 nanoplates with {010} active planes exposing prepared in polyol medium as a high-performance cathode for Li-ion battery. ACS Appl. Mater. Interfaces, 2014, 6(7): 5075.

[26]

Wang L, Wu BR, Mu DB, Liu XJ, Peng YY, Xu HL, Liu Q, Gai L, Wu F. Single-crystal LiNi0.6Co0.2Mn0.2O2 as high performance cathode materials for Li-ion batteries. J. Alloys Compd., 2016, 674, 360.

[27]

Huang ZD, Liu XM, Oh SW, Zhang B, Ma PC, Kim JK. Microscopically porous, interconnected single crystal LiNi1/3Co1/3Mn1/3O2 cathode material for Lithium ion batteries. J. Mater. Chem., 2011, 21(29): 10777.

[28]

Ellis BL, Lee KT, Nazar LF. Positive electrode materials for Li-ion and Li-batteries. Chem. Mater., 2010, 22(3): 691.

[29]

Xu S, Du CY, Xu X, Han GK, Zuo PJ, Cheng XQ, Ma YL, Yin GP. A mild surface washing method using protonated polyaniline for Ni-rich LiNi0.8Co0.1Mn0.1O2 material of lithium ion batteries. Electrochim. Acta, 2017, 248, 534.

[30]

Qian K, Huang BH, Liu YX, Wagemaker M, Liu M, Duan H, Liu DQ, He YB, Li BH, Kang FY. Increase and discretization of the energy barrier for individual LiNixCoyMnyO2 (x + 2y = 1) particles with the growth of a Li2CO3 surface film. J. Mater. Chem. A, 2019, 7(20): 12723.

[31]

Liang LW, Hu GR, Jiang F, Cao YB. Electrochemical behaviours of SiO2-coated LiNi0.8Co0.1Mn0.1O2 cathode materials by a novel modification method. J. Alloys Compd., 2016, 657, 570.

[32]

Chen T, Li X, Wang H, Yan XX, Wang L, Deng BW, Ge WJ, Qu MZ. The effect of gradient boracic polyanion-doping on structure, morphology, and cycling performance of Nirich LiNi0.8Co0.15Al0.05O2 cathode material. J. Power Sources, 2018, 374, 1.

[33]

Toby BH. EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr., 2001, 34(2): 210.

[34]

Lin HB, Zhang YM, Rong HB, Mai SW, Hu JN, Liao YH, Xing LD, Xu MQ, Li XP, Li WS. Crystallographic facet- and size-controllable synthesis of spinel LiNi0.5Mn1.5O4 with excellent cyclic stability as cathode of high voltage lithium ion battery. J. Mater. Chem. A, 2014, 2(30): 11987.

[35]

Bi YJ, Yang WC, Du R, Zhou JJ, Liu M, Liu Y, Wang DY. Correlation of oxygen non-stoichiometry to the instabilities and electrochemical performance of LiNi0.8Co0.1Mn0.1O2 utilized in lithium ion battery. J. Power Sources, 2015, 283, 211.

[36]

Wu NT, Wu H, Kim JK, Liu XM, Zhang Y. Restoration of degraded nickel-rich cathode materials for long-life lithium-ion batteries. ChemElectroChem, 2018, 5(1): 78.

[37]

Gao S, Cheng YT, Shirpour M. Effects of cobalt deficiency on nickel-rich layered LiNi0.8Co0.1Mn0.1O2 positive electrode materials for lithium-ion batteries. ACS Appl. Mater. Interfaces, 2019, 11(1): 982.

[38]

Liu W, Oh P, Liu XE, Lee MJ, Cho W, Chae S, Kim Y, Cho J. Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. Angew. Chem. Int. Ed., 2015, 54(15): 4440.

[39]

Zheng JX, Ye YK, Liu TC, Xiao YG, Wang CM, Wang F, Pan F. Ni/Li disordering in layered transition metal oxide: Electrochemical impact, origin, and control. Acc. Chem. Res., 2019, 52(8): 2201.

[40]

Zhao EY, Chen MM, Hu ZB, Chen DF, Yang LM, Xiao XL. Improved cycle stability of high-capacity Ni-rich LiNi0.8Mn0.1Co0.1O2 at high cut-off voltage by Li2SiO3 coating. J. Power Sources, 2017, 343, 345.

AI Summary AI Mindmap
PDF

141

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/